Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2215442119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442117

RESUMO

Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.


Assuntos
Receptores Odorantes , Atrativos Sexuais , Masculino , Animais , Insetos , Comunicação , Feromônios , Drosophila
2.
J Exp Biol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155696

RESUMO

Barometric pressure is an environmental factor involved in the modulation of a variety of activities in insects. Generally, a drop in barometric pressure precedes the arrival of weather conditions that can affect insect activities and life expectancy. We simulated different scenarios of pressure drop in a modified hermetic chamber and studied their influence on the host-seeking behaviour of the larvae of the robber fly Mallophora ruficauda using air stationary olfactometers. In addition, we studied whether larval density modulates orientation to the host under the same scenarios of pressure drop. We found that motivation to search for hosts is affected by the same slope of pressure drop in both low and high density larvae. However, larval density modulates the onset of the responses to pressure decrease , as low density larvae stop searching for hosts more quickly than high density larvae. This result reflects an avoidance strategy according to which low density larvae would have a reduced host range and higher risks to die and less chances to find a suitable host under adverse pressure conditions. Low density larvae, known to prefer healthy hosts, do notsearch for parasitized hosts under normal pressure conditions nor under a range of pressure drop, strongly suggesting that host selectivity is not modulated by barometric pressure. This study paves the way to a better understanding of the changes in insect crucial behaviours induced by weather conditions and provides more knowledge about the risk factors likely to affect insect survival in a context of foraging ecology.

3.
J Anim Ecol ; 93(7): 943-957, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801060

RESUMO

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Assuntos
Afídeos , Cadeia Alimentar , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Afídeos/fisiologia , França , Grão Comestível , Artrópodes/fisiologia
4.
Parasitology ; 151(2): 185-190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186337

RESUMO

Parasitoid wasps, notably egg parasitoids of the family Eupelmidae (Hymenoptera: Chalcidoidea), a key natural enemy of insect pests, offer a sustainable approach to pest management in agriculture. This study investigated the venom apparatus's developmental dynamics across 4 species of eupelmid egg parasitoids: Anastatus. japonicus, Anastatus fulloi, Mesocomys trabalae and Mesocomys albitarsis. A comprehensive anatomical investigation revealed differences in the dimensions of the venom apparatus across different developmental stages in adult females. We found that the venom apparatus of these 4 studied species consists of a venom gland and a reservoir with an associated Dufour's gland. As the length of post-emergence increases, a significant enlargement in the venom apparatus is evident across all the studied parasitoid species. Notably, M. albitarsis consistently exhibites the shortest venom gland length, whereas that of A. fulloi is the longest among the observed species. At the high day age, the width of venom glands of the 2 Mesocomys species surpasses those of the Anastatus species; for the volume of the venom reservoir, there is a steady increase in all 4 species before the age of 6­7 days, with a decline on 8th day, especially for A. japonicus. This research provided new insights into the developmental trajectories of venom apparatus in eupelmid egg parasitoids and the potential impact of venom potency on their success.


Assuntos
Vespas , Feminino , Animais , Agricultura
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33431565

RESUMO

Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits commonly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increasing in abundance and range. We regard the most important continental-scale stressors to include reductions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines. Spatial variation of reported losses suggests that multiple stressors are in play. With the exception of recent reports from Costa Rica, the most severe examples of moth declines are from Northern Hemisphere regions of high human-population density and intensive agriculture.


Assuntos
Biodiversidade , Mariposas , América , Distribuição Animal , Animais , Extinção Biológica , Cadeia Alimentar , Larva , Estresse Fisiológico , Reino Unido
6.
Pestic Biochem Physiol ; 202: 105974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879315

RESUMO

In fact, less than 1% of applied pesticides reach their target pests, while the remainder pollute the neighboring environment and adversely impact human health as well as non-target organisms in agricultural ecosystem. Pesticides can contribute to the loss of agrobiodiversity, which are essential to maintaining the agro-ecosystem's structure and functioning in order to produce and secure enough food. This review article examines the negative effects of pesticides on non-target invertebrates including earthworms, honeybees, predators, and parasitoids. It also highlights areas where further research is needed to address unresolved issues related to pesticide exposure, aiming to improve conservation efforts for these crucial species. These organisms play crucial roles in ecosystem functioning, such as soil health, pollination, and pest control. Both lethal and sub-lethal effects of pesticides on the selected non-target invertebrates were discussed. Pesticides affect DNA integrity, enzyme activity, growth, behavior, and reproduction of earthworms even at low concentrations. Pesticides could also induce a reduction in individual survival, disruption in learning performance and memory, as well as a change in the foraging behavior of honeybees. Additionally, pesticides adversely affect population growth indices, reproduction, development, longevity, and consumption of predators and parasitoids. As a result, pesticides must pass adequate ecotoxicological risk assessment to be enlisted by regulatory authorities. Therefore, it is important to adopt integrated pest management (IPM) strategies that minimize pesticide use and promote the conservation of beneficial organisms in order to maintain agrobiodiversity and sustainable agricultural systems. Furthermore, adopting precision agriculture and organic farming lessen these negative effects as well.less than.


Assuntos
Agricultura , Ecossistema , Invertebrados , Praguicidas , Animais , Praguicidas/toxicidade , Invertebrados/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Oligoquetos/efeitos dos fármacos
7.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491949

RESUMO

A survey for parasitoids of Lopholeucaspis japonica Cockerell (Hemiptera: Diaspididae), an exotic scale of woody ornamentals, resulted in the discovery of 3 species of aphelinid parasitoid wasps, Pteroptrix chinensis (Howard), Aphytis hispanicus (Mercet), and Marlattiella prima Howard. This serves as the first report of these parasitoids reared from a host in the state of Tennessee, USA. Despite routine pesticide applications in the surveyed nursery and directed treatments of the infested plants to control the scale outbreak, the percentage of parasitized scale in privet and euonymus shrubs averaged 7.0% and 7.9%, respectively. These parasitoids may be useful in the natural or managed control of this pest in the United States, but additional research is needed to understand how these parasitoids contribute to the control of L. japonica in the landscape and how nursery production practices can be modified to promote parasitoid populations.


Assuntos
Hemípteros , Himenópteros , Praguicidas , Vespas , Animais , Tennessee
8.
Ecol Lett ; 26(8): 1407-1418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37340567

RESUMO

Climate change may alter phenology within populations with cascading consequences for community interactions and on-going evolutionary processes. Here, we measured the response to climate warming in two sympatric, recently diverged (~170 years) populations of Rhagoletis pomonella flies specialized on different host fruits (hawthorn and apple) and their parasitoid wasp communities. We tested whether warmer temperatures affect dormancy regulation and its consequences for synchrony across trophic levels and temporal isolation between divergent populations. Under warmer temperatures, both fly populations developed earlier. However, warming significantly increased the proportion of maladaptive pre-winter development in apple, but not hawthorn, flies. Parasitoid phenology was less affected, potentially generating ecological asynchrony. Observed shifts in fly phenology under warming may decrease temporal isolation, potentially limiting on-going divergence. Our findings of complex sensitivity of life-history timing to changing temperatures predict that coming decades may see multifaceted ecological and evolutionary changes in temporal specialist communities.


Assuntos
Crataegus , Malus , Tephritidae , Vespas , Animais , Evolução Biológica , Tephritidae/fisiologia , Frutas
9.
Ecol Lett ; 26(3): 460-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708055

RESUMO

While mechanisms of plant-plant communication for alerting neighbouring plants of an imminent insect herbivore attack have been described aboveground via the production of volatile organic compounds (VOCs), we are yet to decipher the specific components of plant-plant signalling belowground. Using bioassay-guided fractionation, we isolated and identified the non-protein amino acid l-DOPA, released from roots of Acyrtosiphon pisum aphid-infested Vicia faba plants, as an active compound in triggering the production of VOCs released aboveground in uninfested plants. In behavioural assays, we show that after contact with l-DOPA, healthy plants become highly attractive to the aphid parasitoid (Aphidius ervi), as if they were infested by aphids. We conclude that l-DOPA, originally described as a brain neurotransmitter precursor, can also enhance immunity in plants.


Assuntos
Afídeos , Compostos Orgânicos Voláteis , Animais , Feromônios , Levodopa , Herbivoria , Afídeos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Plantas , Interações Hospedeiro-Parasita
10.
J Anim Ecol ; 92(2): 466-476, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479696

RESUMO

Bottom-up effects from host plants and top-down effects from predators on herbivore abundance and distribution vary with physical environment, plant chemistry, predator and herbivore trait and diversity. Tri-trophic interactions in tropical ecosystems may follow different patterns from temperate ecosystems due to differences in above abiotic and biotic conditions. We sampled leaf-chewing larvae of Lepidoptera (caterpillars) from a dominant host tree species in a seasonal rainforest in Southwest China. We reared out parasitoids and grouped herbivores based on their diet preferences, feeding habits and defence mechanisms. We compared caterpillar abundance with leaf numbers ('bottom-up' effects) and parasitoid abundance ('top-down' effects) between different seasons and herbivore traits. We found bottom-up effects were stronger than top-down effects. Both bottom-up and top-down effects were stronger in the dry season than in the wet season, which were driven by polyphagous rare species and host plant phenology. Contrary to our predictions, herbivore traits did not influence differences in the bottom-up or top-down effects except for stronger top-down effects for shelter-builders. Our study shows season is the main predictor of the bottom-up and top-down effects in the tropics and highlights the complexity of these interactions.


Assuntos
Herbivoria , Lepidópteros , Plantas , Animais , Ecossistema , Lepidópteros/parasitologia , Plantas/parasitologia , Floresta Úmida , Estações do Ano , Clima Tropical , China
11.
J Anim Ecol ; 92(10): 2067-2077, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37649437

RESUMO

The food chain length represents how much energy reaches different trophic levels in food webs. Environmental changes derived from human activities have the potential to affect chain length. We explore how habitat area and edges affect chain length through: (1) a bottom-up effect of abundance ('pyramid hypothesis'); (2) the truncation of the highest trophic level ('trophic-rank hypothesis'); and (3) changes in species connectivity patterns ('connectivity hypothesis'). We built plant-leaf miner-parasitoid food webs in 19 remnants of a fragmented Chaco forest from central Argentina. On each remnant, we constructed food webs from different locations at the forest interior and edges. For each food web, we registered the abundance of species, the species richness of each trophic level, estimated the connectivity of their networks, and the average food chain length. We used structural equation models to evaluate the direct and indirect effects of habitat area and edge/interior location on food chain length mediated by species richness, abundance and connectivity. We found no direct effects of habitat area on chain length but chains were longer at forest edges than at their interior. The three mechanisms were supported by our results, although they showed different strengths. First, we found that the interior favours a bottom-up abundance effect from herbivores to parasitoids that positively affected chain length; second, we found that the forest area positively affects plant richness, which has a strong effect on the number of resources used by consumers, with a positive effect on chain length. Third, the remnant area and interior position favoured plant richness with a negative effect on the abundance of parasitoids, which had a positive effect on chain length. In general, the strongest effects on chain length were detected through changes in abundance rather than species richness although abundance was less affected by habitat fragmentation. We evaluated for the first time the effects of human-driven habitat fragmentation on the length of trophic chains in highly diverse plant-herbivore-parasitoid networks. Despite the loss of species, small habitat fragments and edges embedded in the agricultural matrix can support interaction networks, making them conservation targets in managed landscapes.


El largo de cadenas tróficas representa cuanta energía alcanza diferentes niveles tróficos en redes tróficas. Los cambios ambientales producto de las actividades humanas tienen el potencial de afectar el largo de las cadenas tróficas. Exploramos como el área de hábitat y los bordes afectan el largo de cadenas tróficas a través de: (1) un efecto ascendente de la abundancia ('hipótesis pirámide'); (2) el truncamiento del nivel trófico superior ('hipótesis de ranking trófico'); y (3) cambios en los patrones de conectividad ('hipótesis de conectividad'). Construimos redes tróficas entre plantas-minadores de hoja-parasitoides en 19 remanentes de bosque Chaqueño serrano altamente fragmentado en el centro de Argentina. Para cada remanente construimos redes tróficas en distintas ubicaciones en el borde e interior del bosque. Para cada red trófica registramos la abundancia media de las especies, la riqueza de cada nivel trófico, estimamos la conectividad de las redes y el largo de cadenas tróficas promedio. Utilizamos modelos de ecuaciones estructurales para evaluar los efectos directos e indirectos del área y la ubicación borde/interior sobre el largo de cadenas tróficas mediado por la riqueza de especies, la abundancia y la conectividad. No encontramos efectos directos del área de hábitat sobre el largo de cadenas, pero las cadenas fueron más largas en los bordes que en el interior. Los tres mecanismos propuestos fueron apoyados por los resultados, pero mostraron distinta fuerza. Primero, encontramos que el interior de los bosques favorece los efectos ascendentes de la abundancia desde los herbívoros a los parasitoides lo que afectó positivamente al largo de las cadenas; segundo, encontramos que el área de bosque afectó positivamente a la riqueza de especies, lo que tuvo un efecto positivo en el largo de cadenas. Tercero, el área de bosque remanente y la ubicación en el interior favorecieron la riqueza de plantas, influyendo negativamente en la abundancia de parasitoides lo que tuvo un efecto positivo en el largo de cadenas. En general, los efectos más fuertes sobre el largo de cadenas se detectaron a través de cambios en la abundancia más que en la riqueza, aunque la abundancia fue menos afectada por la fragmentación del hábitat que la riqueza de especies. En este estudio evaluamos por primera vez los efectos de la fragmentación del hábitat por causas humanas sobre el largo de cadenas tróficas en redes tróficas altamente diversas de plantas, herbívoros y parasitoides. A pesar de la pérdida de especies, los fragmentos pequeños y los bordes de bosque inmersos en una matriz agrícola pueden sostener redes de interacciones, convirtiéndolos en objetivos de conservación en paisajes manejados.


Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Florestas , Cadeia Alimentar , Herbivoria , Plantas
12.
Oecologia ; 201(1): 1-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36165922

RESUMO

Resource use by consumers across patches is often proportional to the quantity or quality of the resource within these patches. In folivores, such proportional use of resources is likely to be more efficient when plants are spatially proximate, such as trees forming a forest canopy. However, resources provided by forest-trees are often not used proportionally. We hypothesised that proportional use of resources is reduced when host trees are isolated among phylogenetically distant neighbours that mask olfactory and visual search cues, and reduce folivore movement between trees. Such phylogenetically distant neighbourhoods might sort out species that are specialists, poor dispersers, or have poor access to information about leaf quality. We studied individual oaks, their leaf size and quality, their folivory and abundance of folivores (mostly Lepidopteran ectophages, gallers and miners), and parasitism of folivores. We found that leaf consumption by ectophages hardly increased with increasing leaf size when host trees were phylogenetically isolated. We found a similar effect on host use by parasitoids in 1 year. In contrast, we found no consistent effects in other folivore guilds. Relative abundances of specialists and species with wingless females declined with phylogenetic isolation. However, resource use within each of these groups was inconsistently affected by phylogenetic isolation. We suggest that phylogenetic isolation prevents ectophages from effectively choosing trees with abundant resources, and also sorts out species likely to recruit in situ on their host tree. Trees in phylogenetically distant neighbourhoods may be selected for larger leaves and greater reliance on induced defences.


Assuntos
Florestas , Quercus , Filogenia , Herbivoria , Folhas de Planta
13.
J Chem Ecol ; 49(5-6): 340-352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160550

RESUMO

Cotton has been used as a model plant to study direct and indirect plant defence against herbivorous insects. However, the plant growing conditions could have an important effect on the outcome of such plant defence studies. We examined how common experimental growth conditions influence constitutive and inducible defences in two species of cotton, Gossypium hirsutum and G. herbaceum. We induced plants by applying caterpillar regurgitant to mechanical wounds to compare the induction levels between plants of both species grown in greenhouse or phytotron conditions. For this we measured defence metabolites (gossypol and heliocides) and performance of Spodoptera frugiperda caterpillars on different leaves, the emission of plant volatiles, and their attractiveness to parasitic wasps. Induction increased the levels of defence metabolites, which in turn decreased the performance of S. frugiperda larvae. Constitutive and induced defence levels were the highest in plants grown in the phytotron (compared to greenhouse plants), G. hirsutum and young leaves. Defence induction was more pronounced in plants grown in the phytotron and in young leaves. Also, the differences between growing conditions were more evident for metabolites in the youngest leaves, indicating an interaction with plant ontogeny. The composition of emitted volatiles was different between plants from the two growth conditions, with greenhouse-grown plants showing more variation than phytotron-grown plants. Also, G. hirsutum released higher amounts of volatiles and attracted more parasitic wasps than G. herbaceum. Overall, these results highlight the importance of experimental abiotic factors in plant defence induction and ontogeny of defences. We therefore suggest careful consideration in selecting the appropriate experimental growing conditions for studies on plant defences.


Assuntos
Gossypium , Vespas , Animais , Gossypium/metabolismo , Larva , Spodoptera , Herbivoria
14.
Bull Entomol Res ; 113(3): 326-334, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36539342

RESUMO

The aim of this study was to investigate how the primary (PHP) and secondary host plants (SHP) in the fruit orchards affect the interactions of aphids and their parasitoids in northwest Turkey during spring and summer 2020 and 2021. In total, 67 tritrophic aphid-parasitoid-host plant interactions, including new association records for Europe and Turkey, were obtained from 16 parasitoid species from the subfamily Aphidiinae (Hymenoptera: Braconidae) reared from 25 aphid species (Hemiptera: Aphididae) on 22 PHP and SHP in the fruit orchards. Also, we evaluated the effect of the PHP and SHP on the parasitoids, aphids and their interactions. We revealed that the species richness and the values of the biodiversity indices of the parasitoids and aphids were significantly higher on the SHP than the PHP. Similarly, the aphid-parasitoid interactions on the SHP showed greater diversity than the PHP. The results of this study clearly show that the interactions of parasitoids and aphids in the fruit orchards were more diverse on the SHP compared to the PHP.


Assuntos
Afídeos , Himenópteros , Vespas , Animais , Frutas , Plantas , Biodiversidade , Interações Hospedeiro-Parasita
15.
Parasitol Res ; 122(6): 1317-1325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004576

RESUMO

The lifecycle of Brachymeria podagrica, a parasitic wasp with a worldwide distribution, was studied under laboratory conditions using the flesh fly, Sarcophaga dux, as a host. Two hundred parasite-free 3rd instars of S. dux were exposed for 24 h to 20 female B. podagrica. In daily intervals, maggots and later pupae were examined for developmental stages of the parasitoid. The whole pre-imaginal development at a temperature of 26 °C lasted 21 to 26 days. Three morphologically different instars, followed by a prepupal and a pupal stage, were described using light and scanning electron microscopy. In a second experiment with 100 3rd stage Sarcophaga larvae and 10 parasitoids, a total of 70 wasps emerged 20 to 25 days after exposure. Two fly larvae did not pupate and dried out, while 28 pupae contained a dry or caseous content, dead wasp imagos, or their larval stages. No fly imagines emerged from exposed groups, while all 100 unexposed larvae pupated and adults eclosed between day 12 and day 14 after the start of the experiment, while the imagoes of the parasitoids appeared 8 to 12 days later.


Assuntos
Dípteros , Sarcofagídeos , Vespas , Animais , Feminino , Dípteros/parasitologia , Larva , Pupa/parasitologia
16.
Annu Rev Entomol ; 67: 329-346, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34614366

RESUMO

Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.


Assuntos
Afídeos , Vespas , Animais , Afídeos/microbiologia , Cadeia Alimentar , Especificidade de Hospedeiro , Simbiose
17.
Proc Biol Sci ; 289(1988): 20221695, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475436

RESUMO

Insect pests are a major challenge to smallholder crop production in sub-Saharan Africa (SSA), where access to synthetic pesticides, which are linked to environmental and health risks, is often limited. Biological control interventions could offer a sustainable solution, yet an understanding of their effectiveness is lacking. We used a meta-analysis approach to investigate the effectiveness of commonly used biocontrol interventions and botanical pesticides on pest abundance (PA), crop damage (CD), crop yield (Y) and natural enemy abundance (NEA) when compared with controls with no biocontrol and with synthetic pesticides. We also evaluated whether the magnitude of biocontrol effectiveness was affected by type of biocontrol intervention, crop type, pest taxon, farm type and landscape configuration. Overall, from 99 studies on 31 crops, we found that compared to no biocontrol, biocontrol interventions reduced PA by 63%, CD by over 50% and increased Y by over 60%. Compared to synthetic pesticides, biocontrol resulted in comparable PA and Y, while NEA was 43% greater. Our results also highlighted that the potential for biocontrol to be modulated by landscape configuration is a critical knowledge gap in SSA. We show that biocontrol represents an effective tool for smallholder farmers, which can maintain yields without associated negative pesticide effects. Furthermore, the evidence presented here advocates strongly for including biocontrol practices in national and regional agricultural policies.


Assuntos
Produtos Agrícolas , Controle Biológico de Vetores , África Subsaariana
18.
Mol Ecol ; 31(8): 2453-2474, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146829

RESUMO

Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host-type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee-parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state-dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic-taxonomic approach based on birth-death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee-parasitoid, and that transitions towards a phoretic bee-parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee-parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee-and grasshopper-parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.


Assuntos
Besouros , Animais , Teorema de Bayes , Evolução Biológica , Besouros/genética , Especiação Genética , Fenótipo , Filogenia
19.
Biol Lett ; 18(11): 20220280, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36448293

RESUMO

Bodyguard manipulation is a behavioural manipulation in which the host's behaviour is altered to protect the inducer's offspring from imminent biotic threats. The behaviour of a post-parasitoid-egressed host resembles a quiescence state with a characteristic reduction in motor activities like feeding, locomotion, respiration, and metabolic rate. Yet, they respond aggressively through a defensive response when disturbed, which ensures better fitness for the parasitoid's offspring. The behavioural changes in the parasitized host appear after the parasitoid egression. Several hypotheses have been proposed to elucidate how the parasitized host's behaviour is manipulated for the fitness benefits of the inducers, but the exact mechanism is still unknown. We review evidence to explain the behavioural changes and their mechanism in the parasitized hosts. The evidence suggests that parasitoid pre-pupal egression may drive the host to stress-induced sleep. The elevated octopamine concentration also reflects the stress response in the host. Given the theoretical links between the behavioural and the physiological changes in the post-parasitoid-egressed host and stress-induced sleep of other invertebrates, we suggest that behavioural studies combined with functional genomics, proteomics, and histological analyses might give a better understanding of bodyguard manipulation.


Assuntos
Respiração , Sono , Animais , Octopamina , Locomoção , Pupa
20.
J Appl Toxicol ; 42(3): 450-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34486762

RESUMO

The use of graphene and multi-walled carbon nanotubes (MWCNTs) has now become rather common in medical applications as well as several other areas thanks to their useful physicochemical properties. While in vitro testing offers some potential, in vivo research into toxic effects of graphene and MWCNTs could yield much more reliable data. Drosophila melanogaster has recently gained significant popularity as a dynamic eukaryotic model in examining toxicity, genotoxicity, and biological effects of exposure to nanomaterials, including oxidative stress, cellular immune response against two strains (NSRef and G486) of parasitoid wasp (Leptopilina boulardi), phenotypic variations, and locomotor behavior risks. D. melanogaster was used as a model organism in our study to identify the potential risks of exposure to graphene (thickness: 2-18 nm) and MWCNTs in different properties (as pure [OD: 10-20 nm short], modified by amide [NH2 ] [OD: 7-13 nm length: 55 µm], and modified by carboxyl [COOH] [OD: 30-50 nm and length: 0.5-2 µm]) at concentrations ranging from 0.1 to 250 µg/ml. Significant effects were observed at two high doses (100 and 250 µg/ml) of graphene or MWCNTs. This is the first study to report findings of cellular immune response against hematopoiesis and parasitoids, nanogenotoxicity, phenotypic variations, and locomotor behavior in D. melanogaster.


Assuntos
Dano ao DNA , Drosophila melanogaster/efeitos dos fármacos , Grafite/toxicidade , Interações Hospedeiro-Parasita/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/fisiologia , Imunidade Celular/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA