RESUMO
BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.
Assuntos
Caprilatos , Fluorocarbonos , Ocimum basilicum , Fotossíntese , Folhas de Planta , Ocimum basilicum/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Caprilatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fluorocarbonos/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos/efeitos dos fármacosRESUMO
INTRODUCTION: Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that have been linked to a number of health outcomes, including those related to immune dysfunction. However, there are limited numbers of epidemiological-based studies that directly examine the association between PFAS exposure and immune responses. METHODS: In this cross-sectional study nested in the California Teachers Study cohort, we measured nine PFAS analytes in serum. Of the 9 analytes, we further evaluated four (PFHxS [perfluorohexane sulfonate], PFNA [perfluorononanoic acid], PFOA [perfluorooctanoic acid], PFOS [perfluorooctanesulfonic acid]) that had detection levels of > 80 %, in relation to 16 systemic inflammatory/immune markers and corresponding immune pathways (Th1 [pro-inflammatory/macrophage activation], B-cell activation, and T-cell activation). Study participants (n = 722) were female, completed a questionnaire regarding various health measures and behaviors, and donated a blood sample between 2013-2016. The association between PFAS analytes and individual immune markers and pathways were evaluated by calculating odds ratios (OR) and 95 % confidence intervals (CI) in a logistic regression model. PFAS analytes were evaluated both as a dichotomous exposure (above or below the respective median) and as a continuous variable (per 1 unit increase [ng/mL]). RESULTS: The prevalence of detecting any PFAS analyte rose with increasing age, with the highest PFAS prevalence observed among those aged 75 + years and the lowest PFAS prevalence observed among those aged 40-49 years (study participant age range: 40-95 years). Significant associations with BAFF (B-cell activating factor) levels above the median were observed among participants with elevated (defined as above the median) levels of PFHxS (OR=1.53), PFOA (OR=1.43), and PFOS (OR=1.40). Similarly, there were statistically significant associations between elevated levels of PFHxS and TNFRII (tumor necrosis factor receptor 2) levels (OR=1.78) and IL2Rα (interleukin 2 receptor subunit alpha) levels (OR=1.48). We also observed significant inverse associations between elevated PFNA and sCD14 (soluble cluster of differentiation 14) (OR=0.73). No significant associations were observed between elevated PFNA and any immune marker. Evaluation of PFAS exposures as continuous exposures in association with dichotomized cytokines were generally consistent with the dichotomized associations. CONCLUSIONS: PFAS exposure was associated with altered levels of circulating inflammatory/immune markers; the associations were specific to PFAS analyte and immune marker. If validated, our results may suggest potential immune mechanisms underlying associations between the different PFAS analytes and adverse health outcomes.
RESUMO
Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.
Assuntos
Simulação por Computador , Fluorocarbonos , Túbulos Renais Proximais , Modelos Biológicos , Humanos , Fluorocarbonos/farmacocinética , Túbulos Renais Proximais/metabolismo , Meia-Vida , Taxa de Depuração Metabólica , Fluxo de Trabalho , Eliminação Renal , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/metabolismo , Células Epiteliais/metabolismoRESUMO
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging environmental endocrine disruptors that may adversely affect the human endocrine system, particularly the thyroid gland, the largest endocrine gland in the human body. An epidemiologic survey was conducted involving 318 community residents in Shanghai, China, to assess PFAS exposure levels. The relationship between PFAS exposure and five thyroid function indicators was analyzed using Bayesian Kernel Regression (BKMR) and Weighted Quantile Sum Regression (WQS). Ten effector genes related to PFAS and thyroid diseases were identified through the Comparative Toxicogenomics Database (CTD) for bioinformatics analysis and pathways involved were explored through mediation analysis. In vivo validation of these effector genes was conducted using PCR, complemented by in vitro cellular experiments involving transcriptome sequencing and the construction of animal models to simulate mixed PFAS exposure in the general population. Mixed PFAS exposure was found to impact thyroid health primarily through pathways related to lipid metabolism in toxicogenomic studies and resulted in the upregulation of key genes associated with lipid metabolism in animal models. Our results demonstrate that PFAS exposure could affect the expression of lipid metabolism pathways through the modulation of transcription factors, contributing to the development of thyroid disease.
Assuntos
Fluorocarbonos , Humanos , Animais , Fluorocarbonos/toxicidade , Toxicogenética , Glândula Tireoide/efeitos dos fármacos , Feminino , Masculino , China , Disruptores Endócrinos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidadeRESUMO
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Assuntos
Fluorocarbonos , Transcriptoma , Peixe-Zebra , Animais , Peixe-Zebra/genética , Fluorocarbonos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Perfilação da Expressão Gênica , Poluentes Químicos da Água/toxicidadeRESUMO
While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Adulto Jovem , Humanos , Transcriptoma , Estudos Transversais , Leucócitos Mononucleares , República Tcheca , Fluorocarbonos/toxicidadeRESUMO
OBJECTIVES: Per- and polyfluoroalkyl substances (PFASs) are a large class of synthetic chemicals widely used for their unique properties. Without PFAS, many medical device and in vitro diagnostic technologies would not be able to perform their intended purposes. Potential health risks associated with exposure to PFAS influence their use in IVD applications. This paper aims to assess the current situation concerning PFAS, including regulations and legislations for their use. It is important to know what happens to (PFAS) at the end of their lives in medical laboratories. METHODS: A survey was conducted in March 2023 to collect information on the potential emission and end-of-life of PFAS-containing medical technologies in the medical laboratories of the EFLM member societies. A series of questions were presented to the EFLM national societies and the results were documented. RESULTS: Eight respondents participated in the survey, representing EFLM member societies in seven different countries including hospital laboratories, university laboratories, and private laboratories. CONCLUSIONS: PFAS uses in MD and IVD are influenced by several factors, including evolving regulations, advances in technology, safety and efficacy of these substances. Advancements in analytical techniques may lead to more sensitive and precise methods for detecting and quantifying PFAS in biological samples, which can be essential for IVD applications related to biomarker analysis and disease diagnosis. Collaboration among regulatory agencies, industry, research institutions, hospitals, and laboratories on a global scale can aid in establishing harmonized guidelines and standards for the use of PFAS, ensuring consistency and safety within their applications.
Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Humanos , Inquéritos e QuestionáriosRESUMO
BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) constitute a heterogeneous group of synthetic compounds widely used in industrial applications. The estimation of PFAS half-life (t1/2) is essential to quantify their persistence, their toxicity and mechanism of action in humans. OBJECTIVES: The purpose of this review is to summarize the evidence on PFAS half-lives in humans from the available literature, and to investigate the limitations and uncertainties characterizing half-life estimation. METHODS: The search was conducted on PubMed, Scopus, and Embase databases up to July 03, 2023 and was aimed at identifying all papers that estimated PFAS half-life in human populations. We excluded studies on temporal trends or providing estimates of half-life based solely on renal clearance. As persistent and ongoing exposures can influence half-life estimation, we decided to include only studies that were conducted after the main source of exposure to PFAS had ceased. A random-effects meta-analysis was conducted on studies that reported perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) half-life estimation. Risk of bias was evaluated using the OHAT tool. RESULTS: A total of 13 articles were included in the review, with 5 studies conducted in exposed general populations and 8 studies conducted in exposed workers; the estimated mean half-life ranged from 1.48 to 5.1 years for PFOA, from 3.4 to 5.7 years for total PFOS, and from 2.84 to 8.5 years for PFHxS. High heterogeneity among studies was observed; potential reasons include the variability among the investigated populations, discrepancies in considering ongoing exposures, variability in PFAS isomeric compositions, accounting for background exposure, time since exposure stopped and methods used for half-life estimation. DISCUSSION: Despite the efforts made to better understand PFAS toxicokinetics, further studies are needed to identify important characteristics of these persistent chemicals. Biomonitoring studies should focus on persistent and unaccounted sources of exposure to PFAS and on individual characteristics potentially determining half-life, to ensure accurate estimates.
Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Poluentes Ambientais , Fluorocarbonos , Ácidos Sulfônicos , Humanos , Meia-Vida , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Poluentes Ambientais/toxicidadeRESUMO
BACKGROUND: Prior animal and epidemiological studies suggest that per- and polyfluoroalkyl substances (PFAS) exposure may be associated with reduced birth weight. However, results from prior studies evaluated a relatively small set of PFAS. OBJECTIVES: Determine associations of gestational PFAS concentrations in maternal serum samples banked for 60 years with birth outcomes. METHODS: We used data from 97 pregnant women from Boston and Providence that enrolled in the Collaborative Perinatal Project (CPP) study (1960-1966). We quantified concentrations of 27 PFAS in maternal serum in pregnancy and measured infant weight, height and ponderal index at birth. Covariate-adjusted associations between 11 PFAS concentrations (>75% detection limits) and birth outcomes were estimated using linear regression methods. RESULTS: Median concentrations of PFOA, PFNA, PFHxS, and PFOS were 6.189, 0.330, 14.432, and 38.170 ng/mL, respectively. We found that elevated PFAS concentrations during pregnancy were significantly associated with lower birth weight and ponderal index at birth, but no significant associations were found with birth length. Specifically, infants born to women with PFAS concentrations ≥ median levels had significantly lower birth weight (PFOS: ß = -0.323, P = 0.006; PFHxS: ß = -0.292, P = 0.015; PFOA: ß = -0.233, P = 0.03; PFHpS: ß = -0.239, P = 0.023; PFNA: ß = -0.239, P = 0.017). Similarly, women with PFAS concentrations ≥ median levels had significantly lower ponderal index (PFHxS: ß = -0.168, P = 0.020; PFHxA: ß = -0.148, P = 0.018). CONCLUSIONS: Using data from this US-based cohort study, we found that 1) maternal PFAS levels from the 1960s exceeded values in contemporaneous populations and 2) that gestational concentrations of certain PFAS were associated with lower birth weight and infant ponderal index. Additional studies with larger sample size are needed to further examine the associations of gestational exposure to individual PFAS and their mixtures with adverse birth outcomes.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Complicações na Gravidez , Recém-Nascido , Lactente , Humanos , Feminino , Gravidez , Estudos de Coortes , Gestantes , Peso ao Nascer , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Complicações na Gravidez/induzido quimicamenteRESUMO
BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) may impair bone development in adolescence, which impacts life-long bone health. No previous studies have examined prospective associations of individual PFAS and their mixture with bone mineral density (BMD) changes in Hispanic young persons, a population at high risk of osteoporosis in adulthood. OBJECTIVES: To examine associations of individual PFAS and PFAS mixtures with longitudinal changes in BMD in an adolescent Hispanic cohort and examine generalizability of findings in a mixed-ethnicity young adult cohort (58.4% Hispanic). METHODS: Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n = 304; mean follow-up = 1.4 years) and young adults from the Southern California Children's Health Study (CHS; n = 137; mean follow-up = 4.1 years) were included in this study. Plasma PFAS were measured at baseline and dual x-ray absorptiometry scans were performed at baseline and follow-up to measure BMD. We estimated longitudinal associations between BMD and five PFAS via separate covariate-adjusted linear mixed effects models, and between BMD and the PFAS mixture via quantile g-computation. RESULTS: In SOLAR adolescents, baseline plasma perfluorooctanesulfonic acid (PFOS) was associated with longitudinal changes in BMD. Each doubling of PFOS was associated with an average -0.003 g/cm2 difference in change in trunk BMD per year over follow-up (95% CI: -0.005, -0.0002). Associations with PFOS persisted in CHS young adults, where each doubling of plasma PFOS was associated with an average -0.032 g/cm2 difference in total BMD at baseline (95% CI -0.062, -0.003), though longitudinal associations were non-significant. We did not find associations of other PFAS with BMD; associations of the PFAS mixture with BMD outcomes were primarily negative though non-significant. DISCUSSION: PFOS exposure was associated with lower BMD in adolescence and young adulthood, important periods for bone development, which may have implications on future bone health and risk of osteoporosis in adulthood.
Assuntos
Ácidos Alcanossulfônicos , Diabetes Mellitus Tipo 2 , Poluentes Ambientais , Fluorocarbonos , Osteoporose , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Densidade Óssea , Estudos de Coortes , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidadeRESUMO
Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with reduced antibody response to childhood vaccinations. Previous studies have mostly focused on antibodies against diphtheria or tetanus, while fewer studies have assessed antibodies toward attenuated viruses, such as measles, mumps or rubella (MMR). Therefore, we set out to determine associations between prenatal and early postnatal PFAS exposure and vaccine-specific Immunoglobulin G (IgG) in the background-exposed Odense Child Cohort. Blood samples were drawn in pregnancy at gestation weeks 8-16 and from the offspring at age 18 months. In the maternal serum samples we quantified perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA). In the offspring serum samples we quantified the same five PFAS compounds and IgG towards diphtheria, tetanus and MMR. A total of 880 and 841 children were included in the analyses of diphtheria and tetanus or MMR, respectively. Multiple linear regression models were used for estimation of difference in virus-specific IgG per doubling of PFAS concentrations. Maternal PFAS concentrations were non-significantly inversely associated with most vaccine-specific antibody concentrations. Likewise, child PFAS concentrations were associated with non-significant reductions of antibodies towards tetanus and MMR. A significant reduction in the percent difference in mumps antibody concentration per doubling of child PFNA (-9.2% (95% confidence interval: -17.4;-0.2)), PFHxS (-8.3% (-15.0;-1.0) and PFOS (-7.9% (-14.8;-0.4) was found. These findings are of public health concern, as inadequate response towards childhood vaccines may represent a more general immune dysfunction.
Assuntos
Ácidos Alcanossulfônicos , Difteria , Poluentes Ambientais , Ácidos Graxos , Fluorocarbonos , Caxumba , Ácidos Sulfônicos , Tétano , Vacinas , Feminino , Humanos , Lactente , Gravidez , Imunoglobulina GRESUMO
BACKGROUND: As persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) may potentially impact human health. Our study aimed to investigate the prospective association between PFAS exposure and the incidence risk of breast cancer in females. METHODS: By fully following the Jinchang Cohort after a decade, we conducted this nested case-control study with 135 incidence cases of breast cancer (BC) and 540 bias-paired controls. The PFAS levels were tested by baseline serum samples. Conditional logistic regression and a restricted cubic spline model were employed to investigate the BC incidence risks and the dose-response associated with single PFAS component exposure. Furthermore, the Quantile g-computation model (Qgc), random forest model (RFM), and bayesian kernel machine regression models (BKMR) were integrated to estimate the mixed effects of PFAS exposure on the incidence risk of BC. RESULTS: Exposures to specific PFAS components were positively associated with an increased incidence risk of breast cancer. By grouping the study population into different baseline menopausal statuses, PFHxS, PFNA, PFBA, PFUdA, PFOS, and PFDA demonstrated a similarly positive correlation with BC incidence risks. However, the increased incidence risks of BC associated with PFOA, PFOS, PFUdA, and 9CL-PF3ONS exposure were exclusively found in the premenopausal population. Both BKMR and Qgc revealed that exposure to mixed PFAS was associated with an increased risk of breast cancer, with Qgc specifically indicating an odds ratio (OR) of 2.21 (95% CI: 1.53, 3.19). Random forests showed that PFBA, PFOS, PFHxS, and PFDA emerged as predominant factors potentially influencing breast cancer incidence. CONCLUSION: Our findings suggest a strong association between PFAS exposure and the incidence of breast cancer. Premenopausal women should exercise more caution regarding PFAS exposure.
RESUMO
BACKGROUND: Per- and polyfluoroalkyl substance (PFAS) exposures may negatively impact bone mineral accrual, but little is known about potential mitigators of this relation. We assessed whether associations of PFAS and their mixture with bone mineral content (BMC) in adolescence were modified by diet and physical activity. METHODS: We included 197 adolescents enrolled in a prospective pregnancy and birth cohort in Cincinnati, Ohio (2003-2006). At age 12 years, we collected serum for PFAS measurements and used dual-energy x-ray absorptiometry to measure BMC. We calculated dietary calcium intake and Health Eating Index (HEI) scores from repeated 24-h dietary recalls, physical activity scores using the Physical Activity Questionnaire for Older Children (PAQ-C), and average moderate to vigorous physical activity (MVPA) based on accelerometry. We estimated covariate-adjusted differences in BMC z-scores per interquartile range (IQR) increase of individual PFAS concentrations using linear regression and per simultaneous IQR increase in all four PFAS using g-computation. We evaluated effect measure modification (EMM) using interaction terms between each modifier and PFAS. RESULTS: Higher serum perfluorooctanoic acid, perfluorooctanesulfonic acid, and perfluorononanoic acid concentrations and the PFAS mixture were associated with lower BMC z-scores. An IQR increase in all PFAS was associated with a 0.27 (-0.54, 0.01) lower distal radius BMC z-score. Associations with lower BMC were generally stronger among adolescents classified as < median for calcium intake, HEI scores, or MVPA compared to those ≥ median. The difference in distal radius BMC z-score per IQR increase in all PFAS was -0.38 (-0.72, -0.04) for those with Assuntos
Densidade Óssea
, Dieta
, Fluorocarbonos
, Humanos
, Feminino
, Fluorocarbonos/sangue
, Masculino
, Densidade Óssea/efeitos dos fármacos
, Criança
, Adolescente
, Poluentes Ambientais/sangue
, Estudos Prospectivos
, Ohio
, Ácidos Alcanossulfônicos/sangue
, Exercício Físico
, Atividade Motora/efeitos dos fármacos
RESUMO
INTRODUCTION: Epidemiological studies highlight the presence of associations between per- and polyfluoroalkyl substances (PFAS) exposure with liver damage. In 2013, PFAS contamination was discovered in Veneto (Italy), leading to the implementation of a Surveillance Program (SP). Our objective is to investigate the association between PFAS exposure and biomarkers of liver function using single-pollutant and mixture approaches, while exploring the sex-specific differences and the mediating role of obesity in the association. METHODS: The study included 42,094 subjects aged ≥20 years participating in the SP. We used generalized additive models to investigate the association between several PFAS and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, adjusting for possible confounders and stratifying by sex. Results were back-transformed to show predicted percentage changes in outcomes per ln-unit increase in PFAS levels; furthermore, we explored the role of BMI in the abovementioned causal pathway, considering it as a potential confounder or mediator PFAS joint effect was investigated using Quantile G-computation. RESULTS: One ln-unit increase in PFHxS concentrations was associated with a 1.49% (95%CI: 0.87, 2.12) and a 0.84% (95% CI: 0.27, 1.40) increase in ALT levels, in males and females respectively; one ln-unit increase in PFOA concentrations was associated with a 1.03% (95%CI: 0.50, 1.55) increase in ALT levels in males, and a 0.52% (95% CI: 0.22, 0.82) and a 0.60% (95% CI: 0.25, 0.96) increase in AST levels in females and males. PFOS showed no association with ALT and AST levels. Quantile G-computation revealed that an interquartile increase in the PFAS mixture was associated with a 3.02% increase (95% CI: 1.65, 4.43) and a 1.65% (95% CI: 0.77, 2.5) increase in ALT levels, in females and males. Mediation analysis suggested that BMI suppressed the association between PFAS and ALT levels, with positive direct effects higher than the total effects. CONCLUSION: Our findings suggest sex-specific associations between PFAS exposure and liver function biomarkers and underscore the need for additional studies on potential mediators.
RESUMO
BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS: The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS: During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS: For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.
Assuntos
Ácidos Alcanossulfônicos , Doenças Cardiovasculares , Água Potável , Fluorocarbonos , Neoplasias Renais , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Feminino , Humanos , Água Potável/análise , Itália/epidemiologiaRESUMO
Poly- and perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants whose high stability and appreciable water solubility have led to near-global contamination. PFAS are bioaccumulative toxins that have been linked to a myriad of disorders and have been detected nearly universally in human blood. Liquid chromatography-tandem mass spectrometry is the most frequent method used for quantitation, though this typically only measures a few dozen of the >14 000 known PFAS and has been shown to account for a small portion of the total organic fluorine present. Sum parameter methods such as total, extractable, and adsorbable organic fluorine have emerged as alternative measurements for PFAS determination. Combustion ion chromatography has become the preferred method for organofluorine measurement where the sorbent or extract containing PFAS is combusted and the emitted hydrofluoric acid (HF) is a measure of the cumulative organofluorine present. Herein we critically review the types of organofluorine measurement, their separation from the sample matrix, and key parameters of the analytical instrument that affect sensitivity, reproducibility, and recovery with regards to PFAS analysis.
RESUMO
In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.
RESUMO
The ubiquitous presence and persistence of per- and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine-fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine-functionalized polystyrene-divinylbenzene (Sepra-WAX) polymer was modified to create a fluorinated WAX resin (Sepra-WAX-KelF-PEI). The synthesis intermediate (Sepra-WAX-KelF) was also tested to assess the improvement of the final product (Sepra-WAX-KelF-PEI). The adsorption capacity of Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro-n-decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra-WAX-KelF-PEI (523 mg/g) > Sepra-WAX (353 mg/g) > Sepra-WAX-KelF (220 mg/g). Sepra-WAX-KelF-PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
RESUMO
Perfluoroalkyl substances (PFAS) are widely dispersed persistent organic pollutants (POPs) throughout marine ecosystems. Due to ban of traditional long-chain PFAS, the emerging short-chain ones showed increased environmental detection as substitutes. As the foundation of aquatic food webs, microalgae play a pivotal role in the stability of marine environments. However, the toxicity of those short-chain PFAS was lack of investigation. Therefore, we chose 4C PFAS perfluorobutanoic acid (PFBA) and the marine model diatom Thalassiosira pseudonana as research targets, comprehensively studied the toxicity of PFBA to T. pseudonana in terms of the population growth, photosynthetic physiology and oxidative stress. Our results characterized the inhibited growth, inhibited photosynthetic parameters, increased reactive oxygen species (ROS) levels and activated antioxidant system under PFBA exposure. Further transcriptome analysis revealed the underlying molecular mechanisms: photosynthetic genes were slightly down-regulated and the expression of oxidative stress-related genes was enhanced; significant up-regulation of genes related to the DNA excision repair and replication-coupled DNA repair pathways; the expression of carbon metabolisms-related genes was increased, including the Calvin cycle, glycolysis, pentose phosphate pathway, tricarboxylic acid (TCA) cycle and fatty acid biosynthesis, that could provide sufficient energy for the recovery processes of microalgal cells. This study elucidated the underlying toxic mechanisms of PFBA on phytoplankton, and provided novel insights for assessing the environmental risks of PFAS.
Assuntos
Diatomáceas , Fluorocarbonos , Estresse Oxidativo , Fotossíntese , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Fluorocarbonos/toxicidade , Diatomáceas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
The land application of biosolids as a management practice is considered a beneficial use for improving crop yield and reducing the need for other fertilizers. PFAS enter wastewater treatment plants through collection networks, including industrial discharges, the use of PFAS-containing products, and runoff. Therefore, PFAS may be present in biosolids derived from sewage sludge. The objectives of this study were to evaluate PFAS levels in biosolids samples collected at two wastewater treatment plants operated by the Miami Dade Water and Sewer Department (MDWASD): (1) the South District Wastewater Treatment Plant (SDWWTP) which received landfill leachate and (2) the Central District Wastewater Treatment Plant (CDWWTP). Sludge samples were collected after thickening, anaerobic digestion, and dewatering processes. The samples were subjected to batch leaching tests for 30 days. After the leaching tests, the PFAS levels in the liquid and solid fractions were analyzed for 40 PFAS. The findings show that during the aeration process (i.e., activated sludge process), PFAS are removed from the wastewater and accumulate on the solids. When the thickened sludge is digested, some PFAS are released to the liquid phase as the volatile solids decompose. During the dewatering process by centrifugation, PFAS that are partitioned to the liquid phase are removed, reducing PFAS content in the dewatered biosolids. Of the 40 PFAS analyzed, 24 were detected in leachate or solid residue samples. Samples from the SDWWTP had higher levels of PFAS due to the contribution from landfill leachate discharged to this facility. The partitioning of PFAS between the liquid phase and solid residue after 30 days of mixing indicates that the majority of PFAS in the biosolids are highly soluble and have a high tendency to be mobilized (by runoff, irrigation, precipitation) after land application. The fate profiles of PFAS biosolids were evaluated in terms of their solubility and retardation characteristics.