RESUMO
Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneouslyâa technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.
Assuntos
Meios de Contraste , Fluorocarbonos , Ultrassonografia/métodos , Transição de Fase , AcústicaRESUMO
Stroke is the second leading cause of death worldwide, and hypoxia is a major crisis of the brain after stroke. Therefore, providing oxygen to the brain microenvironment can effectively protect neurons from damage caused by cerebral hypoxia. However, there is a lack of timely and effective means of oxygen delivery clinically to the brain for acute cerebral hypoxia. Here, a phase-change based nano oxygen carrier is reported, which can undergo a phase change in response to increasing temperature in the brain, leading to oxygen release. The nano oxygen carrier demonstrate intracerebral oxygen delivery capacity and is able to release oxygen in the hypoxic and inflammatory region of the brain. In the acute ischemic stroke mouse model, the nano oxygen carrier can effectively reduce the area of cerebral infarction and decrease the level of inflammation triggered by cerebral hypoxia. By taking advantage of the increase in temperature during cerebral hypoxia, phase-change oxygen carrier proposes a new intracerebral oxygen delivery strategy for reducing acute cerebral hypoxia.
Assuntos
Oxigênio , Animais , Oxigênio/química , Oxigênio/metabolismo , Camundongos , Hipóxia Encefálica/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Transição de FaseRESUMO
Fluorofluorophores are a unique class of fluorophores that can be solubilized in perfluorocarbons (PFCs) and used to study biological systems. However, because of the low dielectric constant and high oxygen solubility in the fluorous phase, the brightness and photostability of the fluorofluorophores are significantly diminished. Here, we leveraged the tight ion pairing in the fluorous phase to improve the photophysical properties of a fluorous soluble pentamethine dye (FCy5) via counterion exchange. We found that larger, softer, fluorinated, aryl borate counterions promote the ideal polymethine state where charge delocalization across the polymethine chain increases the brightness (6-fold) and photostability (55-fold) of FCy5.
RESUMO
Nanocone clusters (NCCs) have been developed as clusters with inclusion complexes of FDA-approved ß-cyclodextrin (ßCD) and perfluorocarbons (PFC) (i.e., perfluoropentane (PFP) and perfluorohexane (PFH)) and have shown promise in nanoparticle-mediated histotripsy (NMH) applications owing to their lowered cavitation threshold, ease of production, and fluorocarbon quantification. However, there is still a lack of information on the best conditions of the synthesis of NCCs as a product that can have a maximum determinable fluorocarbon content and maintain the stability of the NCC during synthesis and when used as histotripsy agents or exposed to physiological conditions. These concerns about the stability of the clusters and the best possible formulation are investigated in the current work. The cluster formation potential was tested taking into consideration the nature of both PFCs and ßCD by employing different synthesis conditions in terms of solution and environmental parameters such as concentration of solvent, stoichiometry between ßCD and PFCs, temperature, pH, solvent type, etc. The best route of synthesis was then translated into various batch sizes and investigated in terms of the PFC loading and yield. These studies revealed that preparing NCCs in double-distilled water in an ice bath at the optimized solution concentration gave the highest yields and optimal PFC loading, as determined from gas chromatography. Furthermore, the stability of the clusters with different stoichiometries was scrutinized in varying concentrations, mechanical disruption times, pH levels, and temperature conditions, showing effects on each cluster's particle size in dynamic light scattering, visualized in transmission electron microscopy, and cavitation behavior in agarose gel tissue phantoms. These studies revealed stable clusters for all formulations, with PFH-containing NCCs emerging to be the most stable in terms of their cluster size and bubble formation potential in histotripsy. Finally, the shelf life of these clusters was investigated using DLS, which revealed a stable cluster. In conclusion, NCCs have shown high stability in terms of both synthesis, which can be replicated in gram-level production, and the cluster itself, which can be exposed to harsher conditions and still form stable bubbles in histotripsy.
Assuntos
Fluorocarbonos , Nanopartículas , beta-Ciclodextrinas , Fluorocarbonos/química , beta-Ciclodextrinas/química , Nanopartículas/química , Solventes/química , Temperatura , Concentração de Íons de Hidrogênio , PentanosRESUMO
BACKGROUND: Ultrasound and photoacoustic (US/PA) imaging is a promising tool for in vivo visualization and assessment of drug delivery. However, the acoustic properties of the skull limit the practical application of US/PA imaging in the brain. To address the challenges in targeted drug delivery to the brain and transcranial US/PA imaging, we introduce and evaluate an intracerebral delivery and imaging strategy based on the use of laser-activated perfluorocarbon nanodroplets (PFCnDs). METHODS: Two specialized PFCnDs were developed to facilitate bloodâbrain barrier (BBB) opening and contrast-enhanced US/PA imaging. In mice, PFCnDs were delivered to brain tissue via PFCnD-induced BBB opening to the right side of the brain. In vivo, transcranial US/PA imaging was performed to evaluate the utility of PFCnDs for contrast-enhanced imaging through the skull. Ex vivo, volumetric US/PA imaging was used to characterize the spatial distribution of PFCnDs that entered brain tissue. Immunohistochemical analysis was performed to confirm the spatial extent of BBB opening and the accuracy of the imaging results. RESULTS: In vivo, transcranial US/PA imaging revealed localized photoacoustic (PA) contrast associated with delivered PFCnDs. In addition, contrast-enhanced ultrasound (CEUS) imaging confirmed the presence of nanodroplets within the same area. Ex vivo, volumetric US/PA imaging revealed PA contrast localized to the area of the brain where PFCnD-induced BBB opening had been performed. Immunohistochemical analysis revealed that the spatial distribution of immunoglobulin (IgG) extravasation into the brain closely matched the imaging results. CONCLUSIONS: Using our intracerebral delivery and imaging strategy, PFCnDs were successfully delivered to a targeted area of the brain, and they enabled contrast-enhanced US/PA imaging through the skull. Ex vivo imaging, and immunohistochemistry confirmed the accuracy and precision of the approach.
Assuntos
Barreira Hematoencefálica , Encéfalo , Meios de Contraste , Fluorocarbonos , Lasers , Nanopartículas , Técnicas Fotoacústicas , Animais , Barreira Hematoencefálica/metabolismo , Fluorocarbonos/química , Meios de Contraste/química , Camundongos , Técnicas Fotoacústicas/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Ultrassonografia/métodos , MasculinoRESUMO
PURPOSE: To propose a minimum specification dataset to characterize liquid ocular endotamponades (OEs), namely silicone oil (SO), heavy SO (HSO), perfluorodecalin (PFD), and perfluoro-octane (PFO), in terms of physicochemical properties, purity and available evidence of safety, in line with ISO16672:2020. METHODS: An evidence-based consensus using the expert panel technique was conducted. Two facilitators led a committee of 11 European experts. Facilitators prepared a dataset for each compound including the list of specifications relevant for the safety, identified by the group members on the basis of expertise and a comprehensive literature review. Each item was ranked by each member using a 9-point scale from 1 "absolutely to not include" to 9 "absolutely to include" in two rounds followed by discussion. Only items reaching consensus (score ≥ 7 from ≥ 75% of members) were included in the final datasets. RESULTS: For all OEs, consensus was reached to include manufacturer, density, refractive index, chemical composition, dynamic viscosity, interfacial and surface tension, endotoxins, in vitro cytotoxicity assessment, and any evidence from ex vivo and/or in vivo tests for safety assessment. Additional specifications were added for SO (molecular weight distribution, content of oligosiloxanes with MW ≤ 1000 g/mol, spectral transmittance) and PFD/PFO (% of pure PFD/PFO in the final product, vapor pressure, chemical analyses performed for safety assessment). CONCLUSION: The proposed evidence-based minimum specification datasets for SO, HSO, PFD, and PFO have the potential to provide surgeons and health service purchasers with an easily available overview of the most relevant information for the safety assessment of OEs.
Assuntos
Olho , Fluorocarbonos , Humanos , Tamponamento InternoRESUMO
Recent advances in intratracheal delivery strategies have sparked considerable biomedical interest in developing this promising approach for lung cancer diagnosis and treatment. However, there are very few relevant studies on the behavior and mechanism of imaging nanoparticles (NPs) after intratracheal delivery. Here, we found that nanosized perfluoro-15-crown-5-ether (PFCE NPs, â¼200 nm) exhibite significant 19F-MRI signal-to-noise ratio (SNR) enhancement than perfluorooctyl bromide (PFOB NPs) up to day 7 after intratracheal delivery. Alveolar macrophages (AMs) engulf PFCE NPs, become PFCE NPs-laden AMs, and then migrate into the tumor margin, resulting in increased tumor PFCE concentration and 19F-MRI signals. AMs-mediated translocation of PFCE NPs to lung draning lymph nodes (dLNs) decreases the background PFCE concentration. Our results shed light on the dynamic AMs-mediated translocation of intratracheally delivered PFC NPs for effective lung tumor visualization and reveal a pathway to develop and promote the clinical translation of an intratracheal delivery-based imaging strategy.
Assuntos
Fluorocarbonos , Neoplasias Pulmonares , Nanopartículas , Humanos , Macrófagos Alveolares , Imageamento por Ressonância Magnética/métodos , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
Liquid ventilation is a mechanical ventilation technique in which the entire or part of the lung is filled with oxygenated perfluorocarbon (PFC) liquids rather than air in conventional mechanical ventilation. Despite its many ideal biophysicochemical properties for assisting liquid breathing, a general misconception about PFC is to use it as a replacement for pulmonary surfactant. Because of the high PFC-water interfacial tension (59 mN/m), pulmonary surfactant is indispensable in liquid ventilation to increase lung compliance. However, the biophysical function of pulmonary surfactant in liquid ventilation is still unknown. Here, we have studied the adsorption and dynamic surface activity of a natural surfactant preparation, Infasurf, at the PFC-water interface using constrained drop surfactometry. The constrained drop surfactometry is capable of simulating the intra-alveolar microenvironment of liquid ventilation under physiologically relevant conditions. It was found that Infasurf adsorbed to the PFC-water interface reduces the PFC-water interfacial tension from 59 mN/m to an equilibrium value of 9 mN/m within seconds. Atomic force microscopy revealed that after de novo adsorption, Infasurf forms multilayered structures at the PFC-water interface with an average thickness of 10-20 nm, depending on the adsorbing surfactant concentration. It was found that the adsorbed Infasurf film is capable of regulating the interfacial tension of the PFC-water interface within a narrow range, between â¼12 and â¼1 mN/m, during dynamic compression-expansion cycles that mimic liquid ventilation. These findings have novel implications in understanding the physiological and biophysical functions of the pulmonary surfactant film at the PFC-water interface, and may offer new translational insights into the development of liquid ventilation and liquid breathing techniques.
Assuntos
Fluorocarbonos , Ventilação Líquida , Surfactantes Pulmonares , Surfactantes Pulmonares/química , Tensoativos , Tensão Superficial , Água/químicaRESUMO
Small perfluorocycloalkanes (hexafluorocyclopropane (c-C3 F6 ), octafluorocyclobutane (c-C4 F8 ) and decafluorocyclopentane (c-C5 F10 ) and cage-shaped perfluoroalkanes (perfluoro tetrahedral alkane (C4 F4 ), perfluoro prismane (C6 F6 ) and perfluoro cubane (C8 F8 )) are better electron scavengers. The captured excess electrons are weakly bound inside their backbone voids or over their backbones, forming the solvated electron ( e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ ) systems (e@c-Cn F2n s (n=3, 4, 5) and e@Cn Fn (n=4, 6, 8)). There have been many studies on the structures and properties of such e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ systems. However, the effect of e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ on the indirect nuclear spin-spin coupling (J-coupling) is unknown. In this work, we explore how e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ affects Ne J-coupling between two coupled F nuclei (Ne JFF -coupling) in perfluoroalkane e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ systems through density functional theory calculations. We find unusual trans-Ne JFF -couplings (two coupled F nuclei in trans-position) in e@c-Cn F2n (n=3, 4, 5) and Ne JFF -couplings in e@Cn Fn (n=4, 6, 8). One excess electron not only changes the molecular structures, but also enforces unique distributions and properties, depending on the structural characteristics. We also confirm that such unusual Ne JFF -couplings are realized by through- e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ (T-SE) transmission mechanism, rather than the conventional through-bonds (T-B)/through-space (T-S) ones. The novel transmission mechanism consists of the T-SE coupling path (pathâ 1) and e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ -enhanced T-B â ${ \oplus }$ T-S coupling path (pathâ 2), and the two paths jointly control Ne JFF through cooperation and competition. Interestingly, the former plays a dominant role for long-range Ne JFF -coupling (N=5), while the latter plays a role in the short-range Ne JFF -coupling (N=3, 4). Path bending angle mainly influences pathâ 1, while pathâ 2 is mainly influenced by the path length. This work not only provides novel insights into the mediating role of e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ in the coupling information exchange, but also proposes a new e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ -based coupling mechanism, possibly opening up potential applications for the e sol - ${{\rm{e}}_{{\rm{sol}}}^- }$ -based indirect nuclear spin couplings.
RESUMO
Hypoxia is a key impediment encountered in the treatment of most solid tumors, leading to immune escape and therapeutic resistance. Perfluorocarbons (PFCs) have a unique electrical structure and are characterized by a high solubility for gases. PFC-based oxygen carriers have been evaluated for their ability to deliver oxygen effectively to hypoxic tissues, and significant clinical translation has been demonstrated. And due to the unique acoustic activity, PFCs have been employed to stabilize the injection of gas microbubbles (MBs) as clinical ultrasonography contrast agents. In contrast, the ultrasound and photothermally activatable PFC phase-shift nanodroplets (P-SNDs) represent a novel alternative to ultrasound imaging and hypoxia improvement. The PFC-based oxygen carriers may be utilized to improve the efficacy of cancer treatments based on synergistic radiotherapy (RT), chemotherapy (CMT), and photodynamic therapy (PDT) to reshape the tumor microenvironment through synergistic immunotherapy (IMT) and to achieve precise tumor diagnosis using acoustic imaging. This review described the characteristics of PFCs to provide an update on the design of PFC delivery systems used for oxygen delivery and ultrasound imaging to facilitate the treatment and diagnosis of tumors. The objective was to contribute to overcoming the obstacles encountered during PFC research and provide the developing prospects.
Assuntos
Fluorocarbonos , Neoplasias , Humanos , Medicina de Precisão , Fluorocarbonos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia , Microambiente TumoralRESUMO
INTRODUCTION: The aim of this study was to determine whether the use of perfluorocarbon liquid (PFCL) affects the rate of retinal re-attachments after an initial attachment by vitrectomy in eyes with rhegmatogenous retinal detachment (RRD). METHODS: This was a retrospective, observational, multicenter study of 3,446 eyes registered in the Japanese vitreoretinal surgery treatment information database. Of these, 2,648 eyes had undergone vitrectomy as the first surgery for RRD. The re-attachment rates after the primary vitrectomy with or without PFCL were evaluated. In addition, the significance of factors affecting the re-detachments was determined by univariate and multivariate analyses. The measured outcomes were the rates of re-attachments after the primary vitrectomy with or without the use of PFCL. RESULTS: A total of 2,362 eyes in the database were analyzed: 325 had and 2,037 did not have PFCL injected into the vitreous cavity during the vitrectomy. The rate of re-attachments was 91.5% in the PFCL group and 93.2% in the non-PFCL group (p = 0.46, χ2 test). Although there were several risk factors associated with the re-detachments in eyes without PFCL (p < 0.05, Welch's t tests, and Fisher's exact tests), they were not associated in eyes with PFCL use. However, multivariate analyses showed that there was no significant association between the use and the non-use of PFCL in the rate of re-detachments (ß = -0.08, p = 0.46). CONCLUSIONS: The use of PFCL during the initial vitrectomy for RRD does not affect the rate of re-attachments.
Assuntos
Fluorocarbonos , Oftalmologia , Descolamento Retiniano , Humanos , Descolamento Retiniano/cirurgia , Retina , VitrectomiaRESUMO
Myocardial ischemia reperfusion injury (IRI) in acute coronary syndromes is a condition in which ischemic/hypoxic injury to cells subtended by the occluded vessel continues despite successful resolution of the thrombotic obstruction. For decades, most efforts to attenuate IRI have focused on interdicting singular molecular targets or pathways, but none have successfully transitioned to clinical use. In this work, we investigate a nanoparticle-based therapeutic strategy for profound but local thrombin inhibition that may simultaneously mitigate both thrombosis and inflammatory signaling pathways to limit myocardial IRI. Perfluorocarbon nanoparticles (PFC NP) were covalently coupled with an irreversible thrombin inhibitor, PPACK (Phe[D]-Pro-Arg-Chloromethylketone), and delivered intravenously to animals in a single dose prior to ischemia reperfusion injury. Fluorescent microscopy of tissue sections and 19F magnetic resonance images of whole hearts ex vivo demonstrated abundant delivery of PFC NP to the area at risk. Echocardiography at 24 h after reperfusion demonstrated preserved ventricular structure and improved function. Treatment reduced thrombin deposition, suppressed endothelial activation, inhibited inflammasome signaling pathways, and limited microvascular injury and vascular pruning in infarct border zones. Accordingly, thrombin inhibition with an extraordinarily potent but locally acting agent suggested a critical role for thrombin and a promising therapeutic strategy in cardiac IRI.
Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Trombose , Animais , Trombina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Trombose/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Inflamação/tratamento farmacológicoRESUMO
For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.
Assuntos
Injúria Renal Aguda , Fluorocarbonos , Nanopartículas , Humanos , Cisplatino/farmacologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Fluorocarbonos/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Rim/metabolismo , ApoptoseRESUMO
Developing chemical tools to detect and influence biological processes is a cornerstone of chemical biology. Here we combine two tools which rely on orthogonality- perfluorocarbons and multiplexed shortwave infrared (SWIR) fluorescence imaging- to visualize nanoemulsions in real time in living mice. Drawing inspiration from fluorous and SWIR fluorophore development, we prepared two SWIR-emissive, fluorous-soluble chromenylium polymethine dyes. These are the most red-shifted fluorous fluorophores- "fluorofluorophores"-to date. After characterizing the dyes, their utility was demonstrated by tracking perfluorocarbon nanoemulsion biodistribution in vivo. Using an excitation-multiplexed approach to image two variables simultaneously, we gained insight into the importance of size and surfactant identity on biodistribution.
Assuntos
Fluorocarbonos , Imagem Óptica , Animais , Camundongos , Distribuição Tecidual , Imagem Óptica/métodos , Corantes Fluorescentes/química , Raios InfravermelhosRESUMO
19 F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19 Fâ MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100â nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19 Fâ MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19 Fâ MRI imaging. Importantly, our 19 Fâ MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.
Assuntos
Nanopartículas , Polímeros , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Meios de ContrasteRESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) patients with primary tumors and liver metastases have substantially reduced survival. Since mesenchymal-epithelial transition factor (MET) plays a significant role in the molecular mechanisms of advanced NSCLC, small molecule MET inhibitor capmatinib (INC280) hold promise for clinically NSCLC treatment. However, the major obstacles of MET-targeted therapy are poor drug solubility and off-tumor effects, even oral high-dosing regimens cannot significantly increase the therapeutic drug concentration in primary and metastatic NSCLC. METHODS: We developed a multirooted delivery system INC280-PFCE nanoparticles (NPs) by loading INC280 into perfluoro-15-crown-5-ether for improving MET-targeted therapy. Biodistribution and anti-MET/antimetastatic effects of NPs were validated in orthotopic NSCLC and NSCLC liver metastasis models in a single low-dose. The efficacy of INC280-PFCE NPs was also explored in human NSCLC specimens. RESULTS: INC280-PFCE NPs exhibited excellent antitumor ability in vitro. In orthotopic NSCLC models, sustained release and prolonged retention behaviors of INC280-PFCE NPs within tumors could be visualized in real-time by 19F magnetic resonance imaging (19F-MRI), and single pulmonary administration of NPs showed more significant tumor growth inhibition than oral administration of free INC280 at a tenfold higher dose. Furthermore, a single low-dose INC280-PFCE NPs administered intravenously suppressed widespread dissemination of liver metastasis without systemic toxicity. Finally, we verified the clinical translation potential of INC280-PFCE NPs in human NSCLC specimens. CONCLUSIONS: These results demonstrated high anti-MET/antimetastatic efficacies, real-time MRI visualization and high biocompatibility of NPs after a single low-dose.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Nanopartículas , Humanos , Medicina de Precisão , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Distribuição Tecidual , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológicoRESUMO
Fluorine-19 (19 F) magnetic resonance imaging (MRI) is an emerging technique offering specific detection of labeled cells in vivo. Lengthy acquisition times and modest signal-to-noise ratio (SNR) makes three-dimensional spin-density-weighted 19 F imaging challenging. Recent advances in tracer paramagnetic metallo-perfluorocarbon (MPFC) nanoemulsion probes have shown multifold SNR improvements due to an accelerated 19 F T1 relaxation rate and a commensurate gain in imaging speed and averages. However, 19 F T2 -reduction and increased linewidth limit the amount of metal additive in MPFC probes, thus constraining the ultimate SNR. To overcome these barriers, we describe a compressed sampling (CS) scheme, implemented using a "zero" echo time (ZTE) sequence, with data reconstructed via a sparsity-promoting algorithm. Our CS-ZTE scheme acquires k-space data using an undersampled spherical radial pattern and signal averaging. Image reconstruction employs off-the-shelf sparse solvers to solve a joint total variation and l1 -norm regularized least square problem. To evaluate CS-ZTE, we performed simulations and acquired 19 F MRI data at 11.7 T in phantoms and mice receiving MPFC-labeled dendritic cells. For MPFC-labeled cells in vivo, we show SNR gains of ~6.3 × with 8-fold undersampling. We show that this enhancement is due to three mechanisms including undersampling and commensurate increase in signal averaging in a fixed scan time, denoising attributes from the CS algorithm, and paramagnetic reduction of T1 . Importantly, 19 F image intensity analyses yield accurate estimates of absolute quantification of 19 F spins. Overall, the CS-ZTE method using MPFC probes achieves ultrafast imaging, a substantial boost in detection sensitivity, accurate 19 F spin quantification, and minimal image artifacts.
Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Fluorocarbonos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
Detection of bare gas microbubbles by magnetic resonance (MR) at low concentrations typically used in clinical contrast-ultrasound studies was recently demonstrated using hyperCEST. Despite the enhanced sensitivity achieved with hyperCEST, inâ vivo translation is challenging as on-resonance saturation of the gas-phase core of microbubbles consequently results in saturation of the gas-phase hyperpolarized 129 Xe within the lungs. Alternatively, microbubbles can be condensed into the liquid phase to form perfluorocarbon nanodroplets, where 129 Xe resonates at a chemical shift that is separated from the gas-phase signal in the lungs. For ultrasound applications, nanodroplets can be acoustically reverted back into their microbubble form to act as a phase-change contrast agent. Here, we show that low-boiling point perfluorocarbons, both in their liquid and gas form, generate phase-dependent hyperCEST contrast. Magnetic resonance detection of ultrasound-mediated phase transition demonstrates that these perfluorocarbons could be used as a dual-phase dual-modality MR/US contrast agent.
Assuntos
Fluorocarbonos , Meios de Contraste , Microbolhas , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância MagnéticaRESUMO
Recently developed nanocones (NCs), which are inclusion complexes that are made up of cyclodextrins (CDs) and perfluorocarbons (PFCs), have shown promising results in nanoparticle-mediated histotripsy (NMH) applications due to stable inclusion complexation, PFC quantification, simple synthesis, and processing. FDA-approved ßCD and its modified versions such as low-degree methylated ßCD have been previously demonstrated as prime examples of structures capable of accommodating PFC molecules. However, the complex formation potential of different CDs with various cavity sizes in the presence of PFC molecules, and their consequent aggregation, needs to be explored. In the present study, the complexation and aggregation potential of some natural CDs and their respective derivatives either exposed to perfluoropentane (PFP) or perfluorohexane (PFH) were studied in the wet lab. Computational studies were also performed to account for the limitations faced in PFC quantification because of the low optical density of PFCs within the CD complex and to discover the best candidate for NMH applications. All results revealed that only ßCD and γCD (except HMγCD) derivatives form an inclusion complex with PFCs and only LMßCD, ßCD, and γCD form nanocone clusters (NCCs), which precipitate and can be collected for use. Furthermore, the data collectively show that ßCD and PFCs have the best complexation due to stable complex formation, ease of production, and product recovery, especially with PFH as a more suitable candidate due to its high boiling point, which allows workability during synthesis. Although simulations suggest that highly stable inclusion complexes exist, such as HPßCD, the cluster formation resulting in precipitation is hindered due to the high solubility of CDs in water, resulting in intangible yields to work with even after employing general laboratory recovery methods. Conclusively, histotripsy cavitation experiments successfully showed a decreased cavitation threshold among optimal NCC candidates that were identified, supporting their use in NMH.
Assuntos
Ciclodextrinas , Fluorocarbonos , 2-Hidroxipropil-beta-Ciclodextrina , Análise por Conglomerados , Ciclodextrinas/química , Fluorocarbonos/química , SolubilidadeRESUMO
The efficacy of radiotherapy is significantly constricted by tumor hypoxia. To overcome this obstacle, one promising approach is to use the perfluorocarbon-based O2 carriers combined with hyperoxic respiration to relieve tumor hypoxia. However, this passively transported oxygen carrier during hyperoxic respiration is prone to cause systemic oxidative stress and toxicity, which further limits its clinical application. Herein, we fabricate O2@PFC@FHA NPs for safe and specific oxygen delivery into tumors by using the fluorinated hyaluronic acid to encapsulate O2-saturated perfluorocarbon. Due to the interaction between HA and CD44 receptors, more FHA@PFC NPs accumulated in the tumor and the O2@PFC@FHA NPs significantly relieved tumor hypoxia. Notably, RT plus O2@PFC@FHA NPs resulted in almost threefold therapeutic improvement compared with RT without obvious systemic toxicity. Therefore, the O2@FHA@PFC NPs may have great potential to enhance the therapeutic efficacy of radiotherapy in the clinic.