Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(15): 2794-2802, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36914264

RESUMO

The ability to extract rhythmic structure is important for the development of language, music, and social communication. Although previous studies show infants' brains entrain to the periodicities of auditory rhythms and even different metrical interpretations (e.g., groups of two vs three beats) of ambiguous rhythms, whether the premature brain tracks beat and meter frequencies has not been explored previously. We used high-resolution electroencephalography while premature infants (n = 19, 5 male; mean age, 32 ± 2.59 weeks gestational age) heard two auditory rhythms in the incubators. We observed selective enhancement of the neural response at both beat- and meter-related frequencies. Further, neural oscillations at the beat and duple (groups of 2) meter were phase aligned with the envelope of the auditory rhythmic stimuli. Comparing the relative power at beat and meter frequencies across stimuli and frequency revealed evidence for selective enhancement of duple meter. This suggests that even at this early stage of development, neural mechanisms for processing auditory rhythms beyond simple sensory coding are present. Our results add to a few previous neuroimaging studies demonstrating discriminative auditory abilities of premature neural networks. Specifically, our results demonstrate the early capacities of the immature neural circuits and networks to code both simple beat and beat grouping (i.e., hierarchical meter) regularities of auditory sequences. Considering the importance of rhythm processing for acquiring language and music, our findings indicate that even before birth, the premature brain is already learning this important aspect of the auditory world in a sophisticated and abstract way.SIGNIFICANCE STATEMENT Processing auditory rhythm is of great neurodevelopmental importance. In an electroencephalography experiment in premature newborns, we found converging evidence that when presented with auditory rhythms, the premature brain encodes multiple periodicities corresponding to beat and beat grouping (meter) frequencies, and even selectively enhances the neural response to meter compared with beat, as in human adults. We also found that the phase of low-frequency neural oscillations aligns to the envelope of the auditory rhythms and that this phenomenon becomes less precise at lower frequencies. These findings demonstrate the initial capacities of the developing brain to code auditory rhythm and the importance of special care to the auditory environment of this vulnerable population during a highly dynamic period of neural development.


Assuntos
Percepção Auditiva , Música , Recém-Nascido , Adulto , Humanos , Masculino , Lactente , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Audição , Periodicidade
2.
Cereb Cortex ; 32(10): 2265-2276, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34668522

RESUMO

Inter-areal synchronization by phase-phase correlations (PPCs) of cortical oscillations mediates many higher neurocognitive functions, which are often affected by prematurity, a globally prominent neurodevelopmental risk factor. Here, we used electroencephalography to examine brain-wide cortical PPC networks at term-equivalent age, comparing human infants after early prematurity to a cohort of healthy controls. We found that prematurity affected these networks in a sleep state-specific manner, and the differences between groups were also frequency-selective, involving brain-wide connections. The strength of synchronization in these networks was predictive of clinical outcomes in the preterm infants. These findings show that prematurity affects PPC networks in a clinically significant manner, suggesting early functional biomarkers of later neurodevelopmental compromise that may be used in clinical or translational studies after early neonatal adversity.


Assuntos
Eletroencefalografia , Recém-Nascido Prematuro , Encéfalo , Humanos , Lactente , Recém-Nascido , Sono
3.
J Neurosci ; 41(1): 179-192, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33203739

RESUMO

Functional connectivity of neural oscillations (oscillation-based FC) is thought to afford dynamic information exchange across task-relevant neural ensembles. Although oscillation-based FC is classically defined relative to a prestimulus baseline, giving rise to rapid, context-dependent changes in individual connections, studies of distributed spatial patterns show that oscillation-based FC is omnipresent, occurring even in the absence of explicit cognitive demands. Thus, the issue of whether oscillation-based FC is primarily shaped by cognitive state or is intrinsic in nature remains open. Accordingly, we sought to reconcile these observations by interrogating the ECoG recordings of 18 presurgical human patients (8 females) for state dependence of oscillation-based FC in five canonical frequency bands across an array of six task states. FC analysis of phase and amplitude coupling revealed a highly similar, largely state-invariant (i.e., intrinsic) spatial component across cognitive states. This spatial organization was shared across all frequency bands. Crucially, however, each band also exhibited temporally independent FC dynamics capable of supporting frequency-specific information exchange. In conclusion, the spatial organization of oscillation-based FC is largely stable over cognitive states (i.e., primarily intrinsic in nature) and shared across frequency bands. Together, our findings converge with previous observations of spatially invariant patterns of FC derived from extremely slow and aperiodic fluctuations in fMRI signals. Our observations indicate that "background" FC should be accounted for in conceptual frameworks of oscillation-based FC targeting task-related changes.SIGNIFICANCE STATEMENT A fundamental property of neural activity is that it is periodic, enabling functional connectivity (FC) between distant regions through coupling of their oscillations. According to task-based studies, such oscillation-based FC is rapid and malleable to meet cognitive task demands. Studying distributed FC patterns instead of FC in a few individual connections, we found that oscillation-based FC is largely stable across various cognitive states and shares a common layout across oscillation frequencies. This stable spatial organization of FC in fast oscillatory brain signals parallels the known stability of fMRI-based intrinsic FC architecture. Despite the observed spatial state and frequency invariance, FC of individual connections was temporally independent between frequency bands, suggesting a putative mechanism for malleable frequency-specific FC to support cognitive tasks.


Assuntos
Cognição/fisiologia , Vias Neurais/fisiologia , Percepção Espacial/fisiologia , Adulto , Algoritmos , Animais , Mapeamento Encefálico , Sinais (Psicologia) , Eletrocorticografia , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Desempenho Psicomotor/fisiologia , Descanso/fisiologia , Adulto Jovem
4.
Neuroimage ; 264: 119752, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400377

RESUMO

Distinguishing groups of subjects or experimental conditions in a high-dimensional feature space is a common goal in modern neuroimaging studies. Successful classification depends on the selection of relevant features as not every neuronal signal component or parameter is informative about the research question at hand. Here, we developed a novel unsupervised multistage analysis approach that combines dimensionality reduction, bootstrap aggregating and multivariate classification to select relevant neuronal features. We tested the approach by identifying changes of brain-wide electrophysiological coupling in Multiple Sclerosis. Multiple Sclerosis is a demyelinating disease of the central nervous system that can result in cognitive decline and physical disability. However, related changes in large-scale brain interactions remain poorly understood and corresponding non-invasive biomarkers are sparse. We thus compared brain-wide phase- and amplitude-coupling of frequency specific neuronal activity in relapsing-remitting Multiple Sclerosis patients (n = 17) and healthy controls (n = 17) using magnetoencephalography. Changes in this dataset included both, increased and decreased phase- and amplitude-coupling in wide-spread, bilateral neuronal networks across a broad range of frequencies. These changes allowed to successfully classify patients and controls with an accuracy of 84%. Furthermore, classification confidence predicted behavioral scores of disease severity. In sum, our results unravel systematic changes of large-scale phase- and amplitude coupling in Multiple Sclerosis. Furthermore, our results establish a new analysis approach to efficiently contrast high-dimensional neuroimaging data between experimental groups or conditions.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem
5.
BMC Biol ; 19(1): 24, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557811

RESUMO

BACKGROUND: Communication between brain areas has been implicated in a wide range of cognitive and emotive functions and is impaired in numerous mental disorders. In rodent models, various metrics have been used to quantify inter-regional neuronal communication. However, in individual studies, typically, only very few measures of coupling are reported and, hence, redundancy across such indicators is implicitly assumed. RESULTS: In order to test this assumption, we here comparatively assessed a broad range of directional and non-directional metrics like coherence, Weighted Phase Lag Index (wPLI), phase-locking value (PLV), pairwise phase consistency (PPC), parametric and non-parametric Granger causality (GC), partial directed coherence (PDC), directed transfer function (DTF), spike-phase coupling (SPC), cross-regional phase-amplitude coupling, amplitude cross-correlations and others. We applied these analyses to simultaneous field recordings from the prefrontal cortex and the ventral and dorsal hippocampus in the schizophrenia-related Gria1-knockout mouse model which displays a robust novelty-induced hyperconnectivity phenotype. Using the detectability of coupling deficits in Gria1-/- mice and bivariate correlations within animals as criteria, we found that across such measures, there is a considerable lack of functional redundancy. Except for three pairwise correlations-PLV with PPC, PDC with DTF and parametric with non-parametric Granger causality-almost none of the analysed metrics consistently co-varied with any of the other measures across the three connections and two genotypes analysed. Notable exceptions to this were the correlation of coherence with PPC and PLV that was found in most cases, and partial correspondence between these three measures and Granger causality. Perhaps most surprisingly, partial directed coherence and Granger causality-sometimes regarded as equivalent measures of directed influence-diverged profoundly. Also, amplitude cross-correlation, spike-phase coupling and theta-gamma phase-amplitude coupling each yielded distinct results compared to all other metrics. CONCLUSIONS: Our analysis highlights the difficulty of quantifying real correlates of inter-regional information transfer, underscores the need to assess multiple coupling measures and provides some guidelines which metrics to choose for a comprehensive, yet non-redundant characterization of functional connectivity.


Assuntos
Comunicação Celular , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Camundongos Knockout
6.
Nano Lett ; 21(22): 9633-9641, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761938

RESUMO

Designing high-performance trifunctional electrocatalysts for ORR/OER/HER with outstanding activity and stability for each reaction is quite significant yet challenging for renewable energy technologies. Herein, a highly efficient and durable trifunctional electrocatalyst RuCoOx is prepared by a unique one-pot glucose-blowing approach. Remarkably, RuCoOx catalyst exhibits a small potential difference (ΔE) of 0.65 V and low HER overpotential of 37 mV (10 mA cm-2), as well as a negligible decay of overpotential after 200 000/10 000/10 000 CV cycles for ORR/OER/HER, all of which show overwhelming superiorities among the advanced trifunctional electrocatalysts. When used in liquid rechargeable Zn-air batteries and water splitting electrolyzer, RuCoOx exhibits high efficiency and outstanding durability even at quite large current density. Such excellent performance can be attributed to the rational combination of targeted ORR/OER/HER active sites into one electrocatalyst based on the double-phase coupling strategy, which induces sufficient electronic structure modulation and synergistic effect for enhanced trifunctional properties.

7.
Entropy (Basel) ; 24(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359625

RESUMO

Within the framework of quantum mechanics, the wave function squared describes the probability density of particles. In this article, another description of the wave function is given which embeds quantum mechanics into the traditional fields of physics, thus making new interpretations dispensable. The new concept is based on the idea that each microscopic particle with non-vanishing rest mass is accompanied by a matter wave, which is formed by adjusting the phases of the vacuum fluctuations in the vicinity of the vibrating particle. The vibrations of the particle and wave are phase-coupled. Particles move on continuous approximately classical trajectories. By the phase coupling mechanism, the particle transfers the information on its kinematics and thus also on the external potential to the wave. The space dependence of the escorting wave turns out to be equal to the wave function. The new concept fundamentally differs from the pilot wave concept of Bohmian mechanics.

8.
Neuroimage ; 245: 118660, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715317

RESUMO

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each combination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, and data length) and aim to provide recommendations tailored to particular research questions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Vias Neurais/fisiologia , Algoritmos , Simulação por Computador , Eletroencefalografia , Entropia , Humanos , Magnetoencefalografia/métodos , Modelos Neurológicos , Distribuição Normal , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
9.
Neuroimage ; 235: 117971, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839263

RESUMO

Visual perception is influenced by our expectancies about incoming sensory information. It is assumed that mental templates of expected sensory input are created and compared to actual input, which can be matching or not. When such mental templates are held in working memory, cross-frequency phase synchronization (CFS) between theta and gamma band activity has been proposed to serve matching processes between prediction and sensation. We investigated how this is affected by the number of activated templates that could be matched by comparing conditions where participants had to keep either one or multiple templates in mind for successful visual search. We found a transient CFS between EEG theta and gamma activity in an early time window around 150 ms after search display presentation, in right hemispheric parietal cortex. Our results suggest that for single template conditions, stronger transient theta-gamma CFS at posterior sites contralateral to target presentation can be observed than for multiple templates. This can be interpreted as evidence to the idea of sequential attentional templates. But mainly, it is understood in line with previous theoretical accounts strongly arguing for transient synchronization between posterior theta and gamma phase as a neural correlate of matching incoming sensory information with contents from working memory and as evidence for limitations in memory matching during multiple template search.


Assuntos
Atenção/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Ritmo Gama/fisiologia , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
Neuroimage ; 227: 117648, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338621

RESUMO

Phase-amplitude coupling (PAC) has been hypothesized to coordinate cross-frequency interactions of neuronal activity in the brain. However, little is known about the distribution of PAC across the human brain and the frequencies involved. Furthermore, it remains unclear to what extent PAC may reflect spurious cross-frequency coupling induced by physiological artifacts or rhythmic non-sinusoidal signals with higher harmonics. Here, we combined MEG, source-reconstruction and different measures of cross-frequency coupling to systematically characterize local PAC across the resting human brain. We show that cross-frequency measures of phase-amplitude, phase-phase, and amplitude-amplitude coupling are all sensitive to signals with higher harmonics. In conjunction, these measures allow to distinguish harmonic and non-harmonic PAC. Based on these insights, we found no evidence for non-harmonic local PAC in resting-state MEG. Instead, we found cortically and spectrally wide-spread PAC driven by harmonic signals. Furthermore, we show how physiological artifacts and spectral leakage cause spurious PAC across wide frequency ranges. Our results clarify how different measures of cross-frequency interactions can be combined to characterize PAC, and cast doubt on the presence of prominent non-harmonic phase-amplitude coupling in human resting-state MEG.


Assuntos
Artefatos , Encéfalo/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Neurológicos
11.
Int J Med Sci ; 18(10): 2117-2127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859518

RESUMO

Background: Assessment the depth of dexmedetomidine sedation using electroencephalographic (EEG) features can improve the quality of procedural sedation. Previous volunteer studies of dexmedetomidine-induced EEG changes need to be validated, and changes in bicoherence spectra during dexmedetomidine sedation has not been revealed yet. We aimed to investigate the dexmedetomidine-induced EEG change using power spectral and bicoherence analyses in the clinical setting. Patients and Methods: Thirty-six patients undergoing orthopedic surgery under spinal anesthesia were enrolled in this study. Dexmedetomidine sedation was conducted by the stepwise increase in target effect site concentration (Ce) while assessing sedation levels. Bispectral index (BIS) and frontal electroencephalography were recorded continuously, and the performance of BIS and changes in power and bicoherence spectra were analyzed with the data from the F3 electrode. Results: The prediction probability values for detecting different sedation levels were 0.847, 0.841, and 0.844 in BIS, 95% spectral edge frequency, and dexmedetomidine Ce, respectively. As the depth of sedation increased, δ power increased, but high ß and γ power decreased significantly (P <0.001). α and spindle power increased significantly under light and moderate sedation (P <0.001 in light vs baseline and deep sedation; P = 0.002 and P <0.001 in moderate sedation vs baseline and deep sedation, respectively). The bicoherence peaks of the δ and α-spindle regions along the diagonal line of the bicoherence matrix emerged during moderate and deep sedation. Peak bicoherence in the δ area showed sedation-dependent increases (29.93%±7.38%, 36.72%±9.70%, 44.88%±12.90%; light, moderate, and deep sedation; P = 0.008 and P <0.001 in light sedation vs moderate and deep sedation, respectively; P = 0.007 in moderate sedation vs deep sedation), whereas peak bicoherence in the α-spindle area did not change (22.92%±4.90%, 24.72%±4.96%, and 26.96%±8.42%, respectively; P=0.053). Conclusions: The increase of δ power and the decrease of high-frequency power were associated with the gradual deepening of dexmedetomidine sedation. The δ bicoherence peak increased with increasing sedation level and can serve as an indicator reflecting dexmedetomidine sedation levels.


Assuntos
Raquianestesia/métodos , Dexmedetomidina/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Monitorização Neurofisiológica/métodos , Dor Processual/prevenção & controle , Adulto , Idoso , Estado de Consciência/efeitos dos fármacos , Monitores de Consciência , Sedação Profunda/métodos , Relação Dose-Resposta a Droga , Eletroencefalografia , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Monitorização Neurofisiológica/instrumentação , Procedimentos Ortopédicos/efeitos adversos , Dor Processual/etiologia , Adulto Jovem
12.
Neuroimage ; 219: 117051, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32540356

RESUMO

Functional connectivity (FC), thought to provide a window into neural communication, has become a core focus in the study of brain function and cognition. However, there is no consensus on how to conceptualize large-scale FC in electrophysiology. Phase coupling (PhC), defined as coupling between the phases of two signals, reflects the synchronization of rhythmic oscillation cycles. Conversely, amplitude coupling (AmpC), defined as coupling between the envelopes of two signals, reflects correlation of activation amplitude. Despite quantifying different electrophysiological properties, the relationship between PhC and AmpC remains largely unknown. We assessed spatial and temporal correspondence between PhC and AmpC over 5 canonical frequency bands during a cue-based motor task using electrocorticography (ECoG) in 18 patients (8 females) undergoing presurgical monitoring. Significant correspondence between the spatial pattern of PhC and AmpC was detected during stimulus processing across all subjects and frequency bands (R â€‹≈ â€‹0.50 for theta, decreasing with increasing frequency). The cross-measure spatial correlation vanished almost entirely when accounting for the portion of FC equally present during pre- and post-stimulus intervals, suggesting that the spatial correlations reflect intrinsic FC independent of stimulus processing. Stimulus-related processing modulated both PhC and AmpC, however in a spatially independent manner. Examining the linear temporal correlation, we found no evidence for linear dependence between PhC and AmpC. Supporting the robustness of our findings, results extended to a verb generation task in a second ECoG dataset of 6 subjects. We conclude that PhC and AmpC reflect intrinsic FC similarly across space, but exhibit divergent stimulus-related FC changes over space and time.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Eletrocorticografia , Feminino , Humanos , Masculino
13.
Neuroimage ; 209: 116538, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935522

RESUMO

Coupling of neuronal oscillations may reflect and facilitate the communication between neuronal populations. Two primary neuronal coupling modes have been described: phase-coupling and amplitude-coupling. Theoretically, both coupling modes are independent, but so far, their neuronal relationship remains unclear. Here, we combined MEG, source-reconstruction and simulations to systematically compare cortical amplitude-coupling and phase-coupling patterns in the human brain. Importantly, we took into account a critical bias of amplitude-coupling measures due to phase-coupling. We found differences between both coupling modes across a broad frequency range and most of the cortex. Furthermore, by combining empirical measurements and simulations we ruled out that these results were caused by methodological biases, but instead reflected genuine neuronal amplitude coupling. Our results show that cortical phase- and amplitude-coupling patterns are non-redundant, which may reflect at least partly distinct neuronal mechanisms. Furthermore, our findings highlight and clarify the compound nature of amplitude coupling measures.


Assuntos
Ondas Encefálicas/fisiologia , Conectoma/métodos , Sincronização Cortical/fisiologia , Magnetoencefalografia/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Cereb Cortex ; 29(5): 2196-2210, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796825

RESUMO

Cortical activity is organized across multiple spatial and temporal scales. Most research on the dynamics of neuronal spiking is concerned with timescales of 1 ms-1 s, and little is known about spiking dynamics on timescales of tens of seconds and minutes. Here, we used frequency domain analyses to study the structure of individual neurons' spiking activity and its coupling to local population rate and to arousal level across 0.01-100 Hz frequency range. In mouse medial prefrontal cortex, the spiking dynamics of individual neurons could be quantitatively captured by a combination of interspike interval and firing rate power spectrum distributions. The relative strength of coherence with local population often differed across timescales: a neuron strongly coupled to population rate on fast timescales could be weakly coupled on slow timescales, and vice versa. On slow but not fast timescales, a substantial proportion of neurons showed firing anticorrelated with the population. Infraslow firing rate changes were largely determined by arousal rather than by local factors, which could explain the timescale dependence of individual neurons' population coupling strength. These observations demonstrate how neurons simultaneously partake in fast local dynamics, and slow brain-wide dynamics, extending our understanding of infraslow cortical activity beyond the mesoscale resolution of fMRI.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
15.
Neuroimage ; 196: 114-125, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959196

RESUMO

The integration of sensory signals from different modalities requires flexible interaction of remote brain areas. One candidate mechanism to establish communication in the brain is transient synchronization of oscillatory neural signals. Although there is abundant evidence for the involvement of cortical oscillations in brain functions based on the analysis of local power, assessment of the phase dynamics among spatially distributed neuronal populations and their relevance for behavior is still sparse. In the present study, we investigated the interaction between remote brain areas by analyzing high-density electroencephalogram (EEG) data obtained from human participants engaged in a visuotactile pattern matching task. We deployed an approach for purely data-driven clustering of neuronal phase coupling in source space, which allowed imaging of large-scale functional networks in space, time and frequency without defining a priori constraints. Based on the phase coupling results, we further explored how brain areas interacted across frequencies by computing phase-amplitude coupling. Several networks of interacting sources were identified with our approach, synchronizing their activity within and across the theta (∼5 Hz), alpha (∼10 Hz), and beta (∼20 Hz) frequency bands and involving multiple brain areas that have previously been associated with attention and motor control. We demonstrate the functional relevance of these networks by showing that phase delays - in contrast to spectral power - were predictive of task performance. The data-driven analysis approach employed in the current study allowed an unbiased examination of functional brain networks based on EEG source level connectivity data. Showcased for multisensory processing, our results provide evidence that large-scale neuronal coupling is vital to long-range communication in the human brain and relevant for the behavioral outcome in a cognitive task.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Sincronização Cortical , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Estimulação Física , Adulto Jovem
16.
J Neuroeng Rehabil ; 16(1): 135, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699104

RESUMO

BACKGROUND: Brain areas need to coordinate their activity in order to enable complex behavioral responses. Synchronization is one of the mechanisms neural ensembles use to communicate. While synchronization between signals operating at similar frequencies is fairly straightforward, the estimation of synchronization occurring between different frequencies of oscillations has proven harder to capture. One specifically hard challenge is to estimate cross-frequency synchronization between broadband signals when no a priori hypothesis is available about the frequencies involved in the synchronization. METHODS: In the present manuscript, we expand upon the phase linearity measurement, an iso-frequency synchronization metrics previously developed by our group, in order to provide a conceptually similar approach able to detect the presence of cross-frequency synchronization between any components of the analyzed broadband signals. RESULTS: The methodology has been tested on both synthetic and real data. We first exploited Gaussian process realizations in order to explore the properties of our new metrics in a synthetic case study. Subsequently, we analyze real source-reconstructed data acquired by a magnetoencephalographic system from healthy controls in a clinical setting to study the performance of our metrics in a realistic environment. CONCLUSIONS: In the present paper we provide an evolution of the PLM methodology able to reveal the presence of cross-frequency synchronization between broadband data.


Assuntos
Encéfalo/fisiologia , Sincronização Cortical/fisiologia , Algoritmos , Simulação por Computador , Voluntários Saudáveis , Humanos , Magnetoencefalografia , Vias Neurais/fisiologia , Distribuição Normal
17.
BMC Biol ; 16(1): 86, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081912

RESUMO

BACKGROUND: The timing of action potentials ("spikes") of cortical neurons has been shown to be aligned to the phase of low-frequency (< 10 Hz) local field potentials (LFPs) in several cortical areas. However, across the areas, this alignment varies and the role of this spike-phase coupling (SPC) in cognitive functions is not well understood. RESULTS: Here, we propose a role in the coordination of neural activity by selective attention. After refining previous analytical methods for measuring SPC, we show that first, SPC is present along the dorsal processing pathway in macaque visual cortex (area MT); second, spikes occur in falling phases of the low-frequency LFP independent of the location of spatial attention; third, switching spatial attention into the receptive field (RF) of MT neurons decreases this coupling; and finally, the LFP phase causally influences the spikes. CONCLUSIONS: Here, we show that spikes are coupled to the phase of low-frequency LFP along the dorsal visual pathway. Our data suggest that attention harnesses this spike-LFP coupling to de-synchronize neurons and thereby enhance the neural representation of the attended stimuli.


Assuntos
Potenciais de Ação/fisiologia , Atenção , Potenciais Evocados Visuais/fisiologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Neurônios/fisiologia , Vias Visuais/fisiologia
18.
Eur J Neurosci ; 48(7): 2431-2453, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30281858

RESUMO

Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.


Assuntos
Comportamento/fisiologia , Encéfalo/fisiologia , Memória/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Eletroencefalografia/métodos , Acoplamento Excitação-Contração , Humanos
19.
Behav Res Methods ; 50(1): 182-194, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28236217

RESUMO

Patterns of coordination result from the interaction between (at least) two oscillatory components. This interaction is typically understood by means of two variables: the mode that expresses the shape of the interaction, and the stability that is the robustness of the interaction in this mode. A potent method of investigating coordinated behaviors is to examine the extent to which patterns of coordination arise spontaneously. However, a prominent issue faced by researchers is that, to date, no standard methods exist to fairly assess the stability of spontaneous coordination. In the present study, we introduce a new method called the index-of-stability (IS) analysis. We developed this method from the phase-coupling (PC) analysis that has been traditionally used for examining locomotion-respiration coordinated systems. We compared the extents to which both methods estimate the stability of simulated coordinated behaviors. Computer-generated time series were used to simulate the coordination of two rhythmic components according to a selected mode m:n and a selected degree of stability. The IS analysis was superior to the PC analysis in estimating the stability of spontaneous coordinated behaviors, in three ways: First, the estimation of stability itself was found to be more accurate and more reliable with the IS analysis. Second, the IS analysis is not constrained by the limitations of the PC analysis. Third and last, the IS analysis offers more flexibility, and so can be adapted according to the user's needs.


Assuntos
Locomoção/fisiologia , Movimento/fisiologia , Desempenho Psicomotor , Análise e Desempenho de Tarefas , Pesquisa Comportamental , Humanos , Relações Interpessoais
20.
J Neurosci ; 36(20): 5650-60, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194342

RESUMO

UNLABELLED: Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced "vocabulary" of available representational states. SIGNIFICANCE STATEMENT: The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats to examine age-related changes in ripple architecture, ripple-triggered spike variance, and spike-phase coherence. We found that there are, indeed, significant changes in characteristics of ripples in older animals that could impact consolidation processes and memory stabilization in the aged brain.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciais Evocados , Neurônios/fisiologia , Animais , Piscadela , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Condicionamento Clássico , Masculino , Memória , Neurônios/classificação , Ratos , Ratos Endogâmicos F344 , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA