Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902382

RESUMO

Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Bioenerg Biomembr ; 52(2): 93-102, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965457

RESUMO

Acanthamoeba castellanii is a free-living amoeba and the etiological agent of granulomatous amoebic encephalitis and amoebic keratitis. A. castellanii can be present as trophozoites or cysts. The trophozoite is the vegetative form of the cell and has great infective capacity compared to the cysts, which are the dormant form that protect the cell from environmental changes. Phosphate transporters are a group of proteins that are able to internalize inorganic phosphate from the extracellular to intracellular medium. Plasma membrane phosphate transporters are responsible for maintaining phosphate homeostasis, and in some organisms, regulating cellular growth. The aim of this work was to biochemically characterize the plasma membrane phosphate transporter in A. castellanii and its role in cellular growth and metabolism. To measure inorganic phosphate (Pi) uptake, trophozoites were grown in liquid PYG medium at 28 °C for 2 days. The phosphate uptake was measured by the rapid filtration of intact cells incubated with 0.5 µCi of 32Pi for 1 h. The Pi transport was linear as a function of time and exhibited Michaelis-Menten kinetics with a Km = 88.78 ± 6.86 µM Pi and Vmax = 547.5 ± 16.9 Pi × h-1 × 10-6 cells. A. castellanii presented linear phosphate uptake up to 1 h with a cell density ranging from 1 × 105 to 2 × 106 amoeba × ml-1. The Pi uptake was higher in the acidic pH range than in the alkaline range. The oxygen consumption of living trophozoites increased according to Pi addition to the extracellular medium. When the cells were treated with FCCP, no effect from Pi on the oxygen flow was observed. The addition of increasing Pi concentrations not only increased oxygen consumption but also increased the intracellular ATP pool. These phenomena were abolished when the cells were treated with FCCP or exposed to hypoxia. Together, these results reinforce the hypothesis that Pi is a key nutrient for Acanthamoeba castellanii metabolism.


Assuntos
Acanthamoeba castellanii/química , Fosfatos/química , Animais , Trofozoítos
3.
J Biol Chem ; 293(12): 4456-4467, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414789

RESUMO

The expression of the phosphate transporter Pho84 in fission yeast Schizosaccharomyces pombe is repressed in phosphate-rich medium and induced during phosphate starvation. Two other phosphate-responsive genes in S. pombe (pho1 and tgp1) had been shown to be repressed in cis by transcription of a long noncoding (lnc) RNA from the upstream flanking gene, but whether pho84 expression is regulated in this manner is unclear. Here, we show that repression of pho84 is enforced by transcription of the SPBC8E4.02c locus upstream of pho84 to produce a lncRNA that we name prt2 ( pho-repressive transcript 2). We identify two essential elements of the prt2 promoter, a HomolD box and a TATA box, mutations of which inactivate the prt2 promoter and de-repress the downstream pho84 promoter under phosphate-replete conditions. We find that prt2 promoter inactivation also elicits a cascade effect on the adjacent downstream prt (lncRNA) and pho1 (acid phosphatase) genes, whereby increased pho84 transcription down-regulates prt lncRNA transcription and thereby de-represses pho1 Our results establish a unified model for the repressive arm of fission yeast phosphate homeostasis, in which transcription of prt2, prt, and nc-tgp1 lncRNAs interferes with the promoters of the flanking pho84, pho1, and tgp1 genes, respectively.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Fosfato/metabolismo , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica , Sequência de Bases , Homeostase , Mutação , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
4.
J Biol Chem ; 291(51): 26388-26398, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27875295

RESUMO

Pho84, a major facilitator superfamily (MFS) protein, is the main high-affinity Pi transceptor in Saccharomyces cerevisiae Although transport mechanisms have been suggested for other MFS members, the key residues and molecular events driving transport by Pi:H+ symporters are unclear. The current Pho84 transport model is based on the inward-facing occluded crystal structure of the Pho84 homologue PiPT in the fungus Piriformospora indica However, this model is limited by the lack of experimental data on the regulatory residues for each stage of the transport cycle. In this study, an open, inward-facing conformation of Pho84 was used to study the release of Pi A comparison of this conformation with the model for Pi release in PiPT revealed that Tyr179 in Pho84 (Tyr150 in PiPT) is not part of the Pi binding site. This difference may be due to a lack of detailed information on the Pi release step in PiPT. Molecular dynamics simulations of Pho84 in which a residue adjacent to Tyr179, Asp178, is protonated revealed a conformational change in Pho84 from an open, inward-facing state to an occluded state. Tyr179 then became part of the binding site as was observed in the PiPT crystal structure. The importance of Tyr179 in regulating Pi release was supported by site-directed mutagenesis and transport assays. Using trehalase activity measurements, we demonstrated that the release of Pi is a critical step for transceptor signaling. Our results add to previous studies on PiPT, creating a more complete picture of the proton-coupled Pi transport cycle of a transceptor.


Assuntos
Simulação de Dinâmica Molecular , Fosfatos/química , Simportadores de Próton-Fosfato/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Biológico Ativo/fisiologia , Domínio Catalítico , Cristalografia por Raios X , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
5.
BMC Genomics ; 18(1): 701, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877665

RESUMO

BACKGROUND: Ion homeostasis is an essential property of living organisms. The yeast Saccharomyces cerevisiae is an ideal model organism to investigate ion homeostasis at all levels. In this yeast genes involved in high-affinity phosphate uptake (PHO genes) are strongly induced during both phosphate and potassium starvation, indicating a link between phosphate and potassium homeostasis. However, the signal transduction processes involved are not completely understood. As 14-3-3 proteins are key regulators of signal transduction processes, we investigated the effect of deletion of the 14-3-3 genes BMH1 or BMH2 on gene expression during potassium starvation and focused especially on the expression of genes involved in phosphate uptake. RESULTS: Genome-wide analysis of the effect of disruption of either BMH1 or BMH2 revealed that the mRNA levels of the PHO genes PHO84 and SPL2 are greatly reduced in the mutant strains compared to the levels in wild type strains. This was especially apparent at standard potassium and phosphate concentrations. Furthermore the promoter of these genes is less active after deletion of BMH1. Microscopic and flow cytometric analysis of cells with GFP-tagged SPL2 showed that disruption of BMH1 resulted in two populations of genetically identical cells, cells expressing the protein and the majority of cells with no detectible expression. Heterogeneity was also observed for the expression of GFP under control of the PHO84 promoter. Upon deletion of PHO80 encoding a regulator of the transcription factor Pho4, the effect of the BMH1 deletion on SPL2 and PHO84 promoter was lost, suggesting that the BMH1 deletion mainly influences processes upstream of the Pho4 transcription factor. CONCLUSION: Our data indicate that that yeast cells can be in either of two states, expressing or not expressing genes required for high-affinity phosphate uptake and that 14-3-3 proteins are involved in the process(es) that establish the activation state of the PHO regulon.


Assuntos
Proteínas 14-3-3/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas 14-3-3/deficiência , Transporte Biológico/genética , Fosfatos/metabolismo , Potássio/metabolismo
6.
Adv Exp Med Biol ; 1008: 119-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815538

RESUMO

Long noncoding RNAs have recently been discovered to comprise a sizeable fraction of the RNA World. The scope of their functions, physical organization, and disease relevance remain in the early stages of characterization. Although many thousands of lncRNA transcripts recently have been found to emanate from the expansive DNA between protein-coding genes in animals, there are also hundreds that have been found in simple eukaryotes. Furthermore, lncRNAs have been found in the bacterial and archaeal branches of the tree of life, suggesting they are ubiquitous. In this chapter, we focus primarily on what has been learned so far about lncRNAs from the greatly studied single-celled eukaryote, the yeast Saccharomyces cerevisiae. Most lncRNAs examined in yeast have been implicated in transcriptional regulation of protein-coding genes-often in response to forms of stress-whereas a select few have been ascribed yet other functions. Of those known to be involved in transcriptional regulation of protein-coding genes, the vast majority function in cis. There are also some yeast lncRNAs identified that are not directly involved in regulation of transcription. Examples of these include the telomerase RNA and telomere-encoded transcripts. In addition to its role as a template-encoding telomeric DNA synthesis, telomerase RNA has been shown to function as a flexible scaffold for protein subunits of the RNP holoenzyme. The flexible scaffold model provides a specific mechanistic paradigm that is likely to apply to many other lncRNAs that assemble and orchestrate large RNP complexes, even in humans. Looking to the future, it is clear that considerable fundamental knowledge remains to be obtained about the architecture and functions of lncRNAs. Using genetically tractable unicellular model organisms should facilitate lncRNA characterization. The acquired basic knowledge will ultimately translate to better understanding of the growing list of lncRNAs linked to human maladies.


Assuntos
RNA Fúngico , RNA Longo não Codificante , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcrição Gênica/fisiologia , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia
7.
Biochim Biophys Acta ; 1840(6): 1977-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24486411

RESUMO

BACKGROUND: Cobalt has a rare occurrence in nature, but may accumulate in cells to toxic levels. In the present study, we have investigated how the transcription factor Yap1 mediates tolerance to cobalt toxicity. METHODS: Fluorescence microscopy was used to address how cobalt activates Yap1. Using microarray analysis, we compared the transcriptional profile of a strain lacking Yap1 to that of its parental strain. To evaluate the extent of the oxidative damage caused by cobalt, GSH was quantified by HPLC and protein carbonylation levels were assessed. RESULTS: Cobalt activates Yap1 under aerobiosis and anaerobiosis growth conditions. This metal generates a severe oxidative damage in the absence of Yap1. However, when challenged with high concentrations of cobalt, yap1 mutant cells accumulate lower levels of this metal. Accordingly, microarray analysis revealed that the expression of the high affinity phosphate transporter, PHO84, a well-known cobalt transporter, is compromised in the yap1 mutant. Moreover, we show that Yap1 is a repressor of the low affinity iron transporter, FET4, which is also known to transport cobalt. CONCLUSIONS: Cobalt activates Yap1 that alleviates the oxidative damage caused by this metal. Yap1 partially controls cobalt cellular uptake via the regulation of PHO84. Although FET4 repression by Yap1 has no effect on cobalt uptake, it may be its first line of defense against other toxic metals. GENERAL SIGNIFICANCE: Our results emphasize the important role of Yap1 in mediating cobalt-induced oxidative damages and reveal new routes for cell protection provided by this regulator.


Assuntos
Cobalto/toxicidade , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Cobalto/metabolismo , Proteínas de Transporte de Cobre , Proteínas de Ligação ao Ferro/fisiologia , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/fisiologia , Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo
8.
Cell Rep ; 38(4): 110293, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081357

RESUMO

Successful host colonization by fungi in fluctuating niches requires response and adaptation to multiple environmental stresses. However, our understanding about how fungal species thrive in the gastrointestinal (GI) ecosystem by combing multifaceted nutritional stress with respect to homeostatic host-commensal interactions is still in its infancy. Here, we discover that depletion of the phosphate transceptor Pho84 across multiple fungal species encountered a substantial cost in gastrointestinal colonization. Mechanistically, Pho84 enhances the gastrointestinal commensalism via a dual-action activity, coordinating both phosphate uptake and TOR activation by induction of the transcriptional regulator Try4 and downstream commensalism-related transcription. As such, Pho84 promotes Candida albicans commensalism, but this does not translate into enhanced pathogenicity. Thus, our study uncovers a specific nutrient-dependent dual-action regulatory pathway for Pho84 on fungal commensalism.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/fisiologia , Simportadores de Próton-Fosfato/metabolismo , Simbiose/fisiologia , Animais , Células CACO-2 , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
9.
Biology (Basel) ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070801

RESUMO

Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.

10.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184254

RESUMO

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans' tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.IMPORTANCECandida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.


Assuntos
Candida albicans/metabolismo , Parede Celular/metabolismo , Polissacarídeos Fúngicos/biossíntese , Proteínas Fúngicas/metabolismo , Fosfatos/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Metabolômica
11.
Cells ; 8(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096715

RESUMO

Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.


Assuntos
Polifosfatos/metabolismo , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hidrolases Anidrido Ácido/genética , Manganês/toxicidade , Estresse Oxidativo/fisiologia
12.
Microorganisms ; 8(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878309

RESUMO

Iron plays an essential role in all organisms and is involved in the structure of many biomolecules. It also regulates the Fenton reaction where highly reactive hydroxyl radicals occur. Iron is also important for microbial biodiversity, health and nutrition. Excessive iron levels can cause oxidative damage in cells. Saccharomyces cerevisiae evolved mechanisms to regulate its iron levels. To study the iron stress resistance in S. cerevisiae, evolutionary engineering was employed. The evolved iron stress-resistant mutant "M8FE" was analysed physiologically, transcriptomically and by whole genome re-sequencing. M8FE showed cross-resistance to other transition metals: cobalt, chromium and nickel and seemed to cope with the iron stress by both avoidance and sequestration strategies. PHO84, encoding the high-affinity phosphate transporter, was the most down-regulated gene in the mutant, and may be crucial in iron-resistance. M8FE had upregulated many oxidative stress response, reserve carbohydrate metabolism and mitophagy genes, while ribosome biogenesis genes were downregulated. As a possible result of the induced oxidative stress response genes, lower intracellular oxidation levels were observed. M8FE also had high trehalose and glycerol production levels. Genome re-sequencing analyses revealed several mutations associated with diverse cellular and metabolic processes, like cell division, phosphate-mediated signalling, cell wall integrity and multidrug transporters.

13.
Genetics ; 204(2): 659-673, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27474729

RESUMO

The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.


Assuntos
Histona Acetiltransferases/genética , Longevidade/genética , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica , Pleiotropia Genética , Mitocôndrias/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA