Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 247: 118352, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309561

RESUMO

Alizarin Red S (ARS) is commonly utilized for dyeing in textile industry. The dye represents a refractory pollutant in the aquatic environment unless properly treated. To tackle this pollutant, the applicability of chitosan-clay composite (3C) for the ARS removal from textile wastewater was studied. Characterization studies were conducted on the synthesized adsorbent using Fourier transformation infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) techniques. Optimized parameters such as adsorbent's dosage, pH, reaction time, and initial concentrations were tested in a batch system. Additionally, density functional theory (DFT) was calculated to understand the adsorption mechanism and the role of benzene rings and oxygen atoms in the ARS as electron donors. At the same initial concentration of 30 mg/L and optimized conditions of 50 mg of dose, pH 2, and 10 min of reaction time, about 86% of ARS removal was achieved using the composite. The pseudo-second-order kinetic was applicable to model a reasonable fitness of the adsorption reaction, while the Temkin model was representative to simulate the reaction with a maximum adsorption capacity of 44.39 mg/g. This result was higher than magnetic chitosan (40.12 mg/g), or pure chitosan (42.48 mg/g). With ΔH = 27.22 kJ/mol and ΔG<0, the data implied the endothermic and spontaneous nature of the adsorption process. Overall, this implies that the clay-chitosan composite is promising to remove target dye from contaminated wastewater.


Assuntos
Antraquinonas , Quitosana , Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Quitosana/química , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Termodinâmica
2.
Environ Res ; 214(Pt 4): 114070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988827

RESUMO

This work tests the technical applicability of sewage sludge and isolated dead cells of Aeromasss hydrophyla and Branhamella spp for the elimination of inorganic pollutants such as Zn(II), Pb(II), Cd(II), and/or Cu(II) using synthetic wastewater with their initial concentrations of 100 mg/L, respectively. The sludge samples were collected from local sewage treatment plants. The effects of dose and pH on heavy metals removal were evaluated in batch studies and their removal performances were compared to those of previous studies. Both the Freundlich and the Langmuir models were plotted to study their biosorption using activated sludge and the bacteria. Isotherm data, resulting from the batch studies, were compared to the modeling results of Geochem. It was evident that the activated sludge could achieve 99% of Zn(II), Cd(II), Cu(II) and Pb(II) removal with 100 mg/L of concentration at pH 6.0 and 3 g/L of dose. Under the same conditions, 97% of Cd(II), Cu(II) and/or Pb(II) was removed by Aeromasss hydrophyla and Branhamella spp, as indicated by their adsorption capacities (activated sludge: 99.07 mg Pb2+/g; dewatered sludge: 57.15 mg Pb2+/g; digested sludge: 83.58 mg Pb2+/g; 24.47 mg Cd2+/g; Aeromasss hydrophylla: 71.91 mg Pb2+/g; Branhamella spp: 37.52 mg Cu2+/g). Of the four heavy metals studied, Pb(II) had the highest metal adsorption capacity for all adsorbents studied (Pb2+>Cu2+> Cd2+>Zn2+). The modeling results of the Geochem fitted well with the isotherm data of the batch studies at varying concentrations from 20 to 100 mg/L. The thermodynamic constant at pH 4 were comparable to those obtained from previous works. This indicates a reliable prediction over varying metal concentrations and pHs of the batch studies. In spite of the promising results, the treated effluents still could not meet the required effluent limits set by local legislation. Therefore, it is necessary to subsequently treat the samples using biological processes such as activated sludge.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Esgotos , Água
3.
J Environ Manage ; 308: 114556, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124308

RESUMO

Oilfield produced water (OPW) is one of the most important by-products, resulting from oil and gas exploration. The water contains a complex mixture of organic and inorganic compounds such as grease, dissolved salt, heavy metals as well as dissolved and dispersed oils, which can be toxic to the environment and public health. This article critically reviews the complex properties of OPW and various technologies for its treatment. They include the physico-chemical treatment process, biological treatment process, and physical treatment process. Their technological strengths and bottlenecks as well as strategies to mitigate their bottlenecks are elaborated. A particular focus is placed on membrane technologies. Finally, further research direction, challenges, and perspectives of treatment technologies for OPW are discussed. It is conclusively evident from 262 published studies (1965-2021) that no single treatment method is highly effective for OPW treatment as a stand-alone process however, conventional membrane-based technologies are frequently used for the treatment of OPW with the ultrafiltration (UF) process being the most used for oil rejection form OPW and oily waste water. After membrane treatment, treated effluents of the OPW could be reused for irrigation, habitant and wildlife watering, microalgae production, and livestock watering. Overall, this implies that target pollutants in the OPW samples could be removed efficiently for subsequent use, despite its complex properties. In general, it is however important to note that feed quality, desired quality of effluent, cost-effectiveness, simplicity of process are key determinants in choosing the most suitable treatment process for OPW treatment.


Assuntos
Campos de Petróleo e Gás , Purificação da Água , Animais , Gado , Ultrafiltração , Águas Residuárias/análise , Purificação da Água/métodos
4.
J Environ Manage ; 250: 109474, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31505384

RESUMO

In this study, the performance of activated sludge derived granular activated carbon (SGAC) was investigated for ciprofloxacin (CPX) removal from synthetic and simulated wastewaters in a fixed-bed adsorption column operated in continuous mode. The adsorbent was synthesized using chemical activation using ZnCl2 as activating agent. Its surface area and pore volume were found comparable to that of the commercial granular activated carbon (CGAC). The maximum saturation adsorption capacities for CPX were ~16 mg/g and ~14 mg/g, respectively, with SGAC column under identical operating conditions (CPX concentration = 50 mg/L, bed height = 4 cm and wastewater flow rate = 1.5 mL/min) for synthetic and simulated wastewaters. The presence of other organics reduced CPX adsorption capacity of SGAC. The breakthrough curve data for both wastewaters could be adequately fit in Thomas and Yoon-Nelson kinetic models. The addition of H2O2 in wastewater showed no considerable improvement in CPX removal. However, H2O2 oxidation of spent adsorbent exhibited better results compared to thermal treatment for adsorbent regeneration. The results showed that sewage sludge can be recycled as an efficient adsorbent for the removal of recalcitrant organic pollutants from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Ciprofloxacina , Peróxido de Hidrogênio , Esgotos
5.
Bioengineered ; 14(1): 2259526, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37747278

RESUMO

The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.


Assuntos
Herbicidas , Praguicidas , Humanos , Herbicidas/toxicidade , Praguicidas/toxicidade , Agricultura , Carcinogênese , Alimentos
6.
Water Res ; 221: 118752, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810632

RESUMO

Organic matter (OM) in surface and ground waters may cause membrane fouling that is laborious to clean once established. Spontaneous osmotic backwash (OB) induced by solar irradiance fluctuation has been demonstrated for early mineral scaling/organic fouling control in decentralised small-scale photovoltaic powered-nanofiltration/reverse osmosis (PV-NF/RO) membrane systems. However, various OM types will interact differently with membranes which in turn affects the effectiveness of OB. This work evaluates the suitability of spontaneous OB cleaning for eleven OM types (covering low-molecular-weight organics (LMWO), humic substances, polyphenolic compounds and biopolymers) regarding adhesive interactions with NF/RO membranes. The adhesive interactions were quantified by an asymmetric flow field-flow fractionation coupled with an organic carbon detector (FFFF-OCD). The underlying mechanism of OM-membrane adhesive interactions affecting OB cleaning was elucidated. The results indicate that humic acid (a typical humic substance) and tannic acid (a typical polyphenolic compound) induced stronger adhesive interaction with NF/RO membranes than biopolymers and LMWO. When the mass loss of an OM due to adhesion was below a critical range, the spontaneous OB is most effective (>85% flux recovery); and above this range, the OB becomes ineffective (<50% flux recovery). Polyphenolic compounds and humic substances resulted in lower OB cleaning efficiency, due to their higher aromatic content, enhancing hydrophobic interactions and hydrogen bonding. Calcium-facilitated adhesion of some OM types (such as humic substances, polyphenolics and biopolymers) increased irreversible organic fouling potential and weakened OB cleaning, which was verified by both FFFF-OCD and membrane filtration results. This work provides a guidance to formulate strategies to enhance spontaneous OB cleaning, such as first identifying the adhesion of OM in feedwater (surface and ground waters) using FFFF-OCD, and then removing "sticky" OM using suitable pre-treatment processes.


Assuntos
Substâncias Húmicas , Purificação da Água , Adesivos , Membranas Artificiais , Osmose , Energia Renovável , Purificação da Água/métodos
7.
Water Environ Res ; 91(10): 1069-1071, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31291679

RESUMO

This is a review of the literature published in 2018 related to the prevention of water pollution by or recovery of beneficial materials from wastewater produced in the pulp and paper industry. This review includes the following main sections: cleaner production, biological treatment, and physico-chemical treatment. PRACTITIONER POINTS: Converting pulp and paper treatment sludges to value-added materials can be efficient cleaner production technique. Modeling and dynamic simulation techniques of biological treatment along with optimization methods can improve the effluent quality out of a paper mill. Hybrid treatment systems can have a synergistic effect on the treatment of pulp and paper effluents.


Assuntos
Resíduos Industriais , Poluentes Químicos da Água , Papel , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluição da Água
8.
Environ Technol ; 14(11): 1065-1071, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29016267

RESUMO

The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

9.
Eng. sanit. ambient ; 13(2): 121-125, abr.-jun. 2008. ilus, tab
Artigo em Português | LILACS | ID: lil-486648

RESUMO

Durante as análises de Demanda Química de Oxigênio (DQO) é gerado um efluente líquido que se caracteriza pela presença de elevadas concentrações de metais pesados (Hg, Ag, Cr e Fe). Visando à remoção seletiva destes metais, possibilitando suas reutilizações, foram avaliados diferentes agentes precipitantes (Cl-, Br-, I- e S= para a Ag e o Hg e NaOH, NH4OH e NaHCO3 para o Cr e o Fe). Para a Ag e o Hg os melhores resultados em termos de remoção e recuperação seletiva foram obtidos quando do emprego seqüencial dos íons cloreto e sulfeto. Devido à presença de Hg(I), se fez necessário o emprego de NH4OH para separar seletivamente a Ag, presente na forma de AgCl, precipitada concomitantemente com Hg(I) como Hg2Cl2. Para o Cr e o Fe foram obtidas remoções que satisfazem à legislação (FEPAM) para ambos os elementos, somente quando do emprego do NaOH como agente precipitante.


In the analysis of Chemical Oxygen Demand (COD) a liquid residue rich in heavy metals (Hg, Ag, Cr, Fe) is obtained. This work aimed to remove, in a selective way, such metals from the residue using chemical precipitation, also creating a possibility to recover and reuse the heavy metals,. Different precipitants were evaluated (Cl-, Br-, I- and S= for Ag and Hg, and NaOH, NH4OH and NaHCO3 for Cr and Fe). The best results for selective recovery of Ag and Hg were obtained using chloride followed by sulphide. Due to the presence of Hg(I) it is necessary the use of NH4OH to separate Ag and Hg(I) that are both precipitated as AgCl and Hg2Cl2. Removal of Cr and Fe that attends the local limits set by the official control agency (FEPAM) was only obtained when NaOH was used as precipitating agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA