Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252456

RESUMO

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Compostos Orgânicos/análise
2.
Environ Res ; 213: 113755, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753377

RESUMO

This study is the first to investigate the removal of naphthenic acids in a full-scale constructed wetland within the Alberta Oil Sands region. The average mass-removal efficiency for all O2-naphthenic acids measured in three separate deployments in the wetland ranged from 7.5% to 68.9% and appeared sensitive to physicochemical properties of the naphthenic acids, environmental conditions, and water quality. Treatment efficiency of individual naphthenic acids was found to increase with increasing carbon number and decreasing number of double bond equivalents in the molecule. Treatment efficiency was also found to increase with both higher initial turbidity in OSPW entering the wetland, and warmer average OSPW temperatures during wetland operation. Half-life times of naphthenic acids in the treatment wetland ranged between 8.9 and 39 days and were substantially lower than those in tailings ponds (i.e., 12.9-13.6 years) and laboratory studies focussed on bench-scale aerobic microbial biodegradation (i.e., 44-315 days). Using published dose-response data, biomimetic extraction measurements using solid phase microextraction fibers indicate that 14 days of wetland treatment resulted in a reduction in (4 d) deformity of Danio rerio from 50 to 16%, while exhibiting less than 1% toxic response for less sensitive toxic endpoints. The study concludes that wetland treatment is a feasible and productive treatment method for naphthenic acids in oil sands process-affected water due to a combination of sorption and biodegradation.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Ácidos Carboxílicos/química , Meia-Vida , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 41(2): 275-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33978266

RESUMO

As a result of military activities, unexploded ordnance and discarded military munitions are present in underwater environments, which has resulted in the release of munitions constituents including the high explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), along with their primary degradation products, to the water column and adjacent sediments. The present study focused on the characterization of underwater exposure and concentrations of energetics such as TNT and RDX at the former Vieques Naval Training Range at Bahia Salina del Sur (Vieques, Puerto Rico, USA), a bay with documented high incidence of munitions. In situ passive sampling using polar organic chemical integrative samplers (POCIS) was used for the detection and quantification of constituents in water at target locations approximately 15 to 30 cm from 15 individual potentially leaking munitions, and also at 15 unbiased locations approximately evenly spaced across the Bay. For comparison with POCIS-derived concentrations, grab samples were taken at the POCIS target locations. The POCIS-derived and averaged grab samples agreed within a factor of 3. When detected, munitions constituent concentrations (primarily TNT and RDX) were observed at ultratrace concentrations (as low as 4 ng/L for RDX), except 30 cm from one General Purpose bomb where the TNT concentration was 5.3 µg/L, indicating that low-level contamination exists at Bahia Salina del Sur on a very localized scale despite the relatively high density of munitions, similar to previously reported results for other munitions sites around the world. Sediment and porewater sampled at 4 stations where munitions constituents were detected in the water column had concentrations below detection (approximately 5 µg/kg and 5 ng/L, respectively), suggesting that the sediment was not a sink for these constituents at those locations. Environ Toxicol Chem 2022;41:275-286. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Substâncias Explosivas , Militares , Trinitrotolueno , Poluentes Químicos da Água , Substâncias Explosivas/análise , Humanos , Compostos Orgânicos , Triazinas/análise , Trinitrotolueno/análise , Água/química , Poluentes Químicos da Água/análise
4.
Environ Int ; 152: 106493, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740675

RESUMO

Florida manatees depend on freshwater environments as a source of drinking water and as warm-water refuges. These freshwater environments are in direct contact with human activities where glyphosate-based herbicides are being used. Glyphosate is the most used herbicide worldwide and it is intensively used in Florida as a sugarcane ripener and to control invasive aquatic plants. The objective of the present study was to determine the concentration of glyphosate and its breakdown product, aminomethylphosphonic acid (AMPA), in Florida manatee plasma and assess their exposure to manatees seeking a warm-water refuge in Crystal River (west central Florida), and in South Florida. We analyzed glyphosate's and AMPA's concentrations in Florida manatee plasma (n = 105) collected during 2009-2019 using HPLC-MS/MS. We sampled eight Florida water bodies between 2019 and 2020, three times a year: before, during and after the sugarcane harvest using grab samples and molecular imprinted passive Polar Organic Chemical Integrative Samplers (MIP-POCIS). Glyphosate was present in 55.8% of the sampled Florida manatees' plasma. The concentration of glyphosate has significantly increased in Florida manatee samples from 2009 until 2019. Glyphosate and AMPA were ubiquitous in water bodies. The concentration of glyphosate and AMPA was higher in South Florida than in Crystal River, particularly before and during the sugarcane harvest when Florida manatees depend on warm water refuges. Based on our results, Florida manatees were chronically exposed to glyphosate and AMPA, during and beyond the glyphosate applications to sugarcane, possibly associated with multiple uses of glyphosate-based herbicides for other crops or to control aquatic weeds. This chronic exposure in Florida water bodies may have consequences for Florida manatees' immune and renal systems which may further be compounded by other environmental exposures such as red tide or cold stress.


Assuntos
Herbicidas , Trichechus manatus , Animais , Glicina/análogos & derivados , Herbicidas/análise , Organofosfonatos , Espectrometria de Massas em Tandem , Glifosato
5.
Crit Rev Anal Chem ; 50(1): 1-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31204504

RESUMO

Aquatic passive samplers have been extensively tested and deployed in the field over the past two decades. Among these devices is relatively recently developed the Polar Organic Chemical Integrative Sampler (POCIS) for isolation of hydrophilic organic micropollutants in aquatic environment. The use of POCIS allows the measurement of low and fluctuating trace concentrations of such micropollutants, which is often troublesome using classical sampling. In this review, POCIS applications based on numerous articles to assess the suitability of these devices for use in environmental analytics information were summarized. Additionally, the possibilities of using POCIS for the isolation of complex chemical mixtures in order to highlight the high potential of this devices were presented. The types of sorbents used in POCIS, exposure duration and sampling media are juxtapose in this review. Based on the existing literature, attention was paid to both promising opportunities but also to limitations of passive methods.


Assuntos
Técnicas Biossensoriais/instrumentação , Monitoramento Ambiental/instrumentação , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Fluorocarbonos/análise
6.
Environ Toxicol Chem ; 37(8): 2257-2267, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687474

RESUMO

The present study evaluated polar organic chemical integrative samplers (POCIS) for quantification of conventional munitions constituents, including trinitrotoluene (TNT), aminodinitrotoluenes, diaminonitrotoluenes, dinitrotoluene, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a field setting. The POCIS were deployed at varying distances from the commonly used explosive formulation composition B (39.5% TNT, 59.5% RDX, 1% wax) in an embayment of Santa Rosa Sound (Pensacola, FL, USA). Time-weighted averaged water concentrations from a 13-d deployment ranged from 9 to 103 ng/L for TNT and RDX, respectively, approximately 0.3 to 2 m from the source. Concentrations decreased with increasing distance from the source to below quantitation limits (5-7 ng/L) at stations greater than 2 m away. Moderate biofouling of POCIS membranes after 13 d led to a subsequent effort to quantify potential effects of biofouling on the sampling rate for munitions constituents. After biofouling was allowed to occur for periods of 0, 7, 14, or 28 d at the field site, POCIS were transferred to aquaria spiked with munitions constituents. No significant differences in uptake of TNT or RDX were observed across a gradient of biofouling presence, although the mass of fouling organisms on the membranes was statistically greater for the 28-d field exposure. The present study verified the high sensitivity and integrative nature of POCIS for relevant munitions constituents potentially present in aquatic environments, indicating that application at underwater military munitions sites may be useful for ecological risk assessment. Environ Toxicol Chem 2018;37:2257-2267. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Monitoramento Ambiental/métodos , Substâncias Explosivas/análise , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Animais , Incrustação Biológica , Florida , Geografia , Ostreidae/metabolismo , Triazinas/análise , Trinitrotolueno/análise , Água/química , Qualidade da Água
7.
Environ Toxicol Chem ; 33(9): 1946-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24889815

RESUMO

Polar organic chemical integrative samplers (POCIS) were deployed in the vicinity of an offshore oil installation and analyzed for naphthenic acids (NAs). The POCIS accumulated a range of mono- to tetracyclic NAs, with different degrees of alkylation, with monocyclic acids being the most abundant. Currently, POCIS or similar polar samplers may be the only way to measure exposure to NAs from offshore discharges in situ. In addition, they may be a valuable tool for monitoring similar organic acids in general.


Assuntos
Ácidos Carboxílicos/análise , Monitoramento Ambiental/instrumentação , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA