Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400376, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008820

RESUMO

In this study, a 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide (PEPA)-functionalized acrylate monomer, PEPAA, is designed and utilized for the synthesis of macromolecular flame retardants poly(PEPAA-co-AM) with varying PEPAA/AM ratio through copolymerization with acrylamide (AM). The poly(PEPAA-co-AM) is then incorporated into polypropylene (PP) to prepare PP/poly(PEPAA-co-AM) composites. The flame retardant effect of poly(PEPAA-co-AM) on PP is investigated using cone calorimetric test (CCT), and compared with that of PEPAA homopolymer (P-PEPAA), AM homopolymer (PAM), and blends of P-PEPAA/PAM. The results demonstrate that, in comparison with P-PEPAA, PAM, and blends of P-PEPAA/PAM, the incorporation of poly(PEPAA-co-AM) significantly enhances the flame retardancy of PP. Notably, the best flame retardancy is achieved when the ratio of PEPAA/AM copolymerization in poly(PEPAA-co-AM) is 2/8. The morphology and composition of residual chars from combustion are analyzed using SEM-EDS while the residual graphitization degree is examined through Raman spectroscopy. Additionally, TG-FTIR-MS is utilized to investigate the pyrolysis products in gas phase during thermal decomposition of poly(PEPAA-co-AM). Based on these experimental results, a flame retardant mechanism for poly(PEPAA-co-AM) is proposed. The PP/poly(PEPAA-co-AM) composites not only retain the excellent processing properties of pure PP but also exhibit enhanced mechanical properties.

2.
Ecotoxicol Environ Saf ; 280: 116537, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852469

RESUMO

Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 µm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.


Assuntos
Microbioma Gastrointestinal , Fígado , Microplásticos , Polipropilenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Microplásticos/toxicidade , Polipropilenos/toxicidade , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , China , Intestinos/efeitos dos fármacos , Intestinos/patologia , Transcriptoma/efeitos dos fármacos , Rios/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia
3.
Environ Sci Technol ; 57(21): 8130-8138, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194994

RESUMO

The durability of plastics in the marine environment has emerged as a crucial environmental issue. However, the contribution of several factors and the threshold point after which a plastic product generates secondary micro- and nanoplastics is still unclear. To investigate the interaction of environmental parameters with the physicochemical properties of polyethylene (PE) and polypropylene (PP) films in the marine environment, polyolefin films were subjected to weathering in emulated coastal and marine environments for 12 months, focusing on the relationship between radiation load, alteration on the surface, and subsequent generation of microplastics (MPs). The weight average molecular weight (Mw) was found to be strongly correlated with the generated particles and the Feret diameter, implying the generation of secondary microplastics at decreased Mw. A significant and strong relationship between the carbonyl index (CI) and the Feret diameter for PP films weathered on beach sand was identified. This CI-fragmentation relationship involves three sequential stages and suggests that spontaneous fragmentation occurs at CI values above 0.7.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/química , Microplásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos
4.
Part Fibre Toxicol ; 20(1): 2, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36624477

RESUMO

BACKGROUND: Polypropylene (PP) is used in various products such as disposable containers, spoons, and automobile parts. The disposable masks used for COVID-19 prevention mainly comprise PP, and the disposal of such masks is concerning because of the potential environmental pollution. Recent reports have suggested that weathered PP microparticles can be inhaled, however, the inhalation toxicology of PP microparticles is poorly understood. RESULTS: Inflammatory cell numbers, reactive oxygen species (ROS) production, and the levels of inflammatory cytokines and chemokines in PP-instilled mice (2.5 or 5 mg/kg) increased significantly compared to with those in the control. Histopathological analysis of the lung tissue of PP-stimulated mice revealed lung injuries, including the infiltration of inflammatory cells into the perivascular/parenchymal space, alveolar epithelial hyperplasia, and foamy macrophage aggregates. The in vitro study indicated that PP stimulation causes mitochondrial dysfunction including mitochondrial depolarization and decreased adenosine triphosphate (ATP) levels. PP stimulation led to cytotoxicity, ROS production, increase of inflammatory cytokines, and cell deaths in A549 cells. The results showed that PP stimulation increased the p-p38 and p-NF-κB protein levels both in vivo and in vitro, while p-ERK and p-JNK remained unchanged. Interestingly, the cytotoxicity that was induced by PP exposure was regulated by p38 and ROS inhibition in A549 cells. CONCLUSIONS: These results suggest that PP stimulation may contribute to inflammation pathogenesis via the p38 phosphorylation-mediated NF-κB pathway as a result of mitochondrial damage.


Assuntos
Microplásticos , Pneumonia , Polipropilenos , Animais , Camundongos , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Microplásticos/toxicidade , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Polipropilenos/toxicidade , Espécies Reativas de Oxigênio/metabolismo
5.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36991769

RESUMO

This article proposes the design, fabrication and measurement of a triple-rings complementary split-ring resonator (CSRR) microwave sensor for semi-solid material detection. The triple-rings CSRR sensor was developed based on the CSRR configuration with curve-feed designed together, utilizing a high-frequency structure simulator (HFSS) microwave studio. The designed triple rings CSRR sensor resonates at 2.5 GHz, performs in transmission mode, and senses shift in frequency. Six cases of the sample under tests (SUTs) were simulated and measured. These SUTs are Air (without SUT), Java turmeric, Mango ginger, Black Turmeric, Turmeric, and Di-water, and detailed sensitivity analysis is conducted for the frequency resonant at 2.5 GHz. The semi-solid tested mechanism is undertaken using a polypropylene (PP) tube. The samples of dielectric material are filled into PP tube channels and loaded in the CSRR centre hole. The e-fields near the resonator will affect the interaction with the SUTs. The finalized CSRR triple-rings sensor was incorporated with defective ground structure (DGS) to deliver high-performance characteristics in microstrip circuits, leading to a high Q-factor magnitude. The suggested sensor has a Q-factor of 520 at 2.5 GHz with high sensitivity of about 4.806 and 4.773 for Di-water and Turmeric samples, respectively. The relationship between loss tangent, permittivity, and Q-factor at the resonant frequency has been compared and discussed. These given outcomes make the presented sensor ideal for detecting semi-solid materials.

6.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628840

RESUMO

To develop novel mineral-filled composites and assess their enhanced properties (stiffness, a good balance between mechanical strength and impact resistance, greater temperature stability), a high-impact polypropylene copolymer (PPc) matrix containing an elastomeric discrete phase was melt mixed with natural CaSO4 ß-anhydrite II (AII) produced from gypsum rocks. First, in a prior investigation, the PPc composites filled with AII (without any modification) displayed enhanced stiffness, which is correlated with the relative content of the filler. The tensile and impact strengths dramatically decreased, especially at high filling (40 wt.%). Therefore, two key methods were considered to tune up their properties: (a) the ionomeric modification of PPc composites by reactive extrusion (REx) with zinc diacrylate (ZA), and (b) the melt mixing of PPc with AII surface modified with ethylenebis(stearamide) (EBS), which is a multifunctional processing/dispersant additive. The properties of composites produced with twin-screw extruders (TSEs) were deeply assessed in terms of morphology, mechanical, and thermal performance, including characterizations under dynamic mechanical solicitations at low and high temperatures. Two categories of products with distinct properties are obtained. The ionomeric modification by Rex (evaluated by FTIR) led to composites characterized by remarkable thermal stability, a higher temperature of crystallization, stronger interfacial interactions, and therefore noticeable mechanical properties (high tensile strength (i.e., 28 MPa), increased stiffness, moderate (3.3 kJ/m2) to good (5.0 kJ/m2) impact resistance) as well as advanced heat deflection temperature (HDT). On the other hand, the surface modification of AII with EBS facilitated the dispersion and debonding of microparticles, leading to composites revealing improved ductility (strain at break from 50% to 260%) and enhanced impact properties (4.3-5.3 kJ/m2), even at high filling. Characterized by notable mechanical and thermal performances, high whiteness, and a good processing ability, these new PPc-AII composites may be tailored to meet the requirements of end-use applications, ranging from packaging to automotive components.


Assuntos
Micropartículas Derivadas de Células , Polipropilenos , Parafusos Ósseos , Sulfato de Cálcio , Cristalização , Polímeros
7.
J Mater Cycles Waste Manag ; 25(1): 74-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36249571

RESUMO

The vast use of wet wipes has now become a habitude, particularly following the altered perception of cleanliness during the pandemic and the encouragement towards using WW (wet wipe) to ensure parent's and children's hygiene. This study primarily aims to create a projection of the WW waste that will emerge in Turkey as a result of the promoted consumption by children who are predicted to retain the WW usage practices of their parents. In line with this habit adopted by children, the number of daily WW usage which is currently around 210 million is expected to rise to over 250 million between the years 2040 and 2060, depending on how the children are guided by their parent's existing habits. In this study, related calculations were made with FT-IR spectroscopy, taking into account the functional bond structure and percentage distribution of polymers in WWs. In this way, it is detected that 360 T, 568 T, and 623 T polymer materials would be thrown into the environment per day in 2021, 2040 and 2060, respectively. The damage of chemicals in WW content, employed at various concentrations, to the ecosystem structure is predicted and measures to be taken are outlined.

8.
Indoor Air ; 31(4): 1038-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33749958

RESUMO

Screening the volatiles isolated from a standard polypropylene material consisting of a polypropylene homopolymer, the filler talcum, and a mixture of antioxidants, for odor-active compounds by application of an aroma extract dilution analysis revealed 30 odorants with flavor dilution factors ranging from 1 to 64. Eighteen odor-active compounds were subsequently quantitated by gas chromatography-mass spectrometry using stable isotopically substituted odorants as internal standards, and their odor activity values (OAVs) were calculated as ratios of the concentrations to the odor threshold values. Five odorants showed OAVs ≥1, among which were hex-1-en-3-one (OAV 12), butanoic acid (OAV 3), as well as 4-methylphenol, butan-1-ol, and 2-tert-butylphenol (all OAV 1). A comparative analysis of polypropylene materials with different additives suggested plastic-like, pungent smelling hex-1-en-3-one as an ubiquitous key odorant. Odor-active amounts of alkylphenols, in particular plastic-like, phenolic smelling 2-tert-butylphenol, were additionally formed in the presence of talcum and phenolic antioxidants. Whereas the precursors of the phenols were thus obvious, the origin of hex-1-en-3-one was unknown. Injection molding showed only little influence on odorant concentrations.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Odorantes/análise , Polipropilenos , Olfato , Compostos Orgânicos Voláteis/análise
9.
Surg Endosc ; 30(8): 3250-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26679171

RESUMO

BACKGROUND: Oxidative degradation by reactive oxygen species (ROS) from inflammation initiates cross-linking, depolymerization, and formation of a quasi-crystalline quality in polypropylene (PP) meshes that cause embrittlement (J Urol 188:1052, 2012). Embrittlement leads to change in tensile strength and is associated with post-operative complications that include pain, adhesion, dislodgment, and fragmentation. METHODS: A laboratory environment was constructed to study the relationship between concentration of ROS and change in tensile strength. Samples of Ethicon Ultrapro© PP mesh were exposed to 1 mM, 0.1 M, or 1 M hydrogen peroxide solutions for 6 months and were subjected to load displacement tensile testing (LDTT) and compared to unexposed (0 M) meshes of the same brand. RESULTS: Load at failure and elongation to failure after LDTT were determined with 95 % confidence interval. For unexposed (0 M) samples, tensile strength was 28.0 ± 2.4 lbf and elongation to failure was 2.0 ± 0.3 in. For samples exposed to 1 mM, tensile strength was 19.2 ± 1.1 lbf and the elongation to failure was 2.0 ± 0.1 in. For samples exposed to 0.1 M, tensile strength was 19.3 ± 1.6 lbf and elongation to failure was 1.9 ± 0.1 in. For samples exposed to 1 M, tensile strength was 20.7 ± 1.2 lbf and elongation to failure was 0.47 ± 0.02 in. CONCLUSION: The results demonstrated that a 6-month exposure to a physiologic range of ROS (1 mM) decreased tensile strength of PP mesh by 31 %. 1 mM and 0.1 M samples behaved similarly demonstrating properties of a quasi-crystalline nature. 1 M samples displayed qualities of extreme embrittlement. Scanning electron microscopy (SEM) observed fiber changes. 1 M meshes had features of brittle materials. Knowledge of changes in physical properties of PP meshes is useful for considerations for the development of a more biocompatible surgical mesh.


Assuntos
Peróxido de Hidrogênio/farmacologia , Teste de Materiais , Oxidantes/farmacologia , Polipropilenos , Falha de Prótese/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Telas Cirúrgicas , Resistência à Tração/efeitos dos fármacos , Humanos , Inflamação , Complicações Pós-Operatórias/imunologia , Espécies Reativas de Oxigênio/imunologia , Aderências Teciduais , Suporte de Carga
10.
Discov Nano ; 19(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168725

RESUMO

Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.

11.
Chempluschem ; 89(2): e202300497, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882964

RESUMO

The degradation of plastics upon UVC irradiation in aqueous solution and the formation of microplastic (MP) particles were investigated. Polypropylene (PP) and recycled and virgin polyethylene terephthalate (PET) were irradiated with a UV lamp emitting light at 254 nm. Irradiation was performed for 15 and 30 min, respectively, at an intensity of about 0.3 W cm-2 . The formation of MP was studied by Raman spectroscopy. The results showed that MP particles were formed after irradiation and that their number was significantly higher in the recycled PET than in the virgin material. The number of PP MP formed was lower compared to PET and was not significantly different after 15 and 30 min. In addition, ethanol was used as an alternative solvent to investigate how its chemical properties and interactions with UVC irradiation affect the degradation of PET and PP plastics. The use of ethanol and recycled PET resulted in a lower number of MP particles at both irradiation times. When ethanol was used after 30 min of irradiation, significantly more PP MP formed. The different chemical structures of PET and PP combined with the different solvent properties of water and ethanol contribute to the differences in their susceptibility to UVC degradation.

12.
J Hazard Mater ; 476: 135041, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38941829

RESUMO

In this study, we critically evaluated the performance of an emerging technology, hyperspectral imaging (HSI), for detecting microplastics (MPs) in soil. We examined the technology's robustness against varying environmental conditions in five groups of experiments. Our findings show that near-infrared (NIR) hyperspectral imaging (HSI) effectively detects microplastics (MPs) in soil, though detection efficacy is influenced by factors such as MP concentration, color, and soil moisture. We found a generally linear relationship between the levels of MPs in various soils and their spectral responses in the NIR HSI imaging spectrum. However, effectiveness is reduced for certain MPs, like polyethylene, in kaolinite clay. Furthermore, we showed that soil moisture considerably influenced the detection of MPs, leading to nonlinearities in quantification and adding complexities to spectral analysis. The varied responses of MPs of different sizes and colors to NIR HSI present further challenges in detection and quantification. The research suggests pre-grouping of MPs based on size before analysis and proposes further investigation into the interaction between soil moisture and MP detectability to enhance HSI's application in MP monitoring and quantification. To our knowledge, this study is the first to comprehensively evaluate this technology for detecting and quantifying microplastics.

13.
Int J Biol Macromol ; 273(Pt 2): 132640, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825280

RESUMO

The high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport. This work presents the preparation of a new bio-based nanofiber separator by combining oxidized lignin (OL) and halloysite nanotubes (HNTs) with polyimide (PI) using an electrospinning technique. Analysis was conducted to examine and compare the structure, morphology, thermal characteristics, and EIS of the separator with those of commercially available polypropylene separator (PP). The results indicate that the PI@OL and PI-OL@ 10 % HNTs separators exhibit higher lithium ion transference number and ionic conductivity. Moreover, the use of HNTs successfully impeded the proliferation of lithium dendrites, hence exerting a beneficial impact on both the cycle performance and multiplier performance of the battery. Consequently, after undergoing 300 iterations, the battery capacity of LiFePO4|PI-OL@ 10 % HNTs|Li stays at 92.1 %, surpassing that of PP (86.8 %) and PI@OL (89.6 %). These findings indicate that this new bio-based battery separator (PI-OL@HNTs) has the great potential to serve as a substitute for the commonly used PP separator in lithium metal batteries.


Assuntos
Argila , Fontes de Energia Elétrica , Lignina , Lítio , Nanofibras , Nanotubos , Lítio/química , Nanotubos/química , Nanofibras/química , Lignina/química , Argila/química , Oxirredução , Resinas Sintéticas/química
14.
Mar Pollut Bull ; 203: 116441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703629

RESUMO

Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.


Assuntos
Ecotoxicologia , Microplásticos , Mytilus , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Mytilus/efeitos dos fármacos , Monitoramento Ambiental , Glutationa Transferase/metabolismo , Polipropilenos/toxicidade , Polietilenotereftalatos , Estresse Oxidativo , Catalase/metabolismo
15.
Polymers (Basel) ; 16(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675011

RESUMO

Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples. The influence of the compatibilizer rubber on morphological, rheological and mechanical properties was analysed and discussed. Mechanical and morphological properties were evaluated on both isotropic samples obtained by compression moulding and melt-spun fibers. The addition of the rubbery compatibilizer increased the viscosity, improving interfacial adhesion, and the same effect was observed for the melt strength and breaking stretching ratios. Mechanical properties, including the elastic modulus, tensile strength and elongation at break, improved in both types of samples but more significantly in the fibers. These improvements were attributed to the orientation of the matrix, the formation of PET microfibrils, and the reduction in the size of graphene nanoparticles due to the action of the elongational flow. This reduction, facilitated by the elongation flow and the action of the compatibilizer, improved matrix-nanofiller adhesion due to the increased contact area between the two polymeric phases and between the filler and matrix. Finally, a transition from brittle to ductile behaviour was observed, particularly in the system with the compatibilizer, attributed to defect reduction and improved stress transmission.

16.
Heliyon ; 10(12): e32605, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988588

RESUMO

Fused Deposition Modeling (FDM), a widely-utilized additive manufacturing (AM) technology, has found significant favor among automotive manufacturers. Polypropylene (PP) compound is extensively employed in the production of automotive parts due to its superior mechanical properties and formability. However, aiming at the problem of poor dimensional accuracy of pure PP parts, the quality of products can be enhanced by optimizing the combination of processing parameters. In this paper, the dimensional accuracy of 3D-printed components made from pure PP material is investigated. Key influencing factors such as infill percentage, infill pattern, layer thickness, and extrusion temperature are considered. To gain a deeper understanding, fluid simulation is conducted, and mathematical models are established to correlate processing parameters with dimensional accuracy. Furthermore, the Taguchi's experiments are designed and the experimental data are subjected to rigorous Signal-to-Noise ratio and ANOVA analyses. Within the experimental range, the lower extrusion temperature, infill percentage and layer thickness yield the best dimensional accuracy. Considering the influence factors of X, Y and Z directions, the optimal processing parameters for PP prints using screw extrusion 3D printers are determined as follows: an extrusion temperature of 210 °C, an infill percentage of 40 %, a layer thickness of 0.3 mm, and a concentric circle infill pattern. This study provides reference value for the subsequent improvement of the dimensional accuracy of the printed parts.

17.
Materials (Basel) ; 17(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673143

RESUMO

Continuous carbon fiber (cCF)-based 3D-printed polymer composites are known for their excellent flexural properties; however, the optimization of the overall process is still desired, depending on the material types involved. Here, the improved manufacturing of cCF-based composites is reported, considering virgin polyamide (PA) and postindustrial waste polypropylene (PP), and the parameters affecting the material properties are evaluated. Firstly, the prepregnation technique was optimized to manufacture cCF polymer filaments with various fiber-to-polymer ratios. Secondly, the fused filament fabrication (FFF) technique was optimized. It was observed that the layer height needs to be sufficiently low for proper interlayer adhesion. The influence of the printing temperature is more complicated, with filaments characterized by a lower fiber-to-polymer ratio requiring a higher nozzle diameter and higher temperatures for efficient printing; and for lower diameters, the best flexural properties are observed for parts printed at lower temperatures, maintaining a high interspace distance. Plasma treatment of the cCF was also explored, as was annealing of the produced parts to enhance the flexural properties, the latter being specifically interesting for the PP-based composite due to a lower wetting caused by a higher viscosity, despite supportive interfacial interactions. Eventually, overall guidelines were formulated for the successful production of cCF-based composites.

18.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631435

RESUMO

In this study, we developed highly efficient nonwoven membranes by modifying the surface of polypropylene (PP) and poly(butylene terephthalate) (PBT) through photo-grafting polymerization. The nonwoven membrane surfaces of PP and PBT were grafted with poly(ethylene glycol) diacrylate (PEGDA) in the presence of benzophenone (BP) and metal salt. We immobilized tertiary amine groups as BP synergists on commercial nonwoven membranes to improve PP and PBT surfaces. In situ Ag, Au, and Au/Ag nanoparticle formation enhances the nonwoven membrane surface. SEM, FTIR, and EDX were used to analyze the surface. We evaluated modified nonwoven membranes for photocatalytic activity by degrading methylene blue (MB) under LED and sunlight. Additionally, we also tested modified membranes for antibacterial activity against E. coli. The results indicated that the modified membranes exhibited superior efficiency in removing MB from water. The PBT showed the highest efficiency in dye removal, and bimetallic nanoparticles were more effective than monometallic. Modified membranes exposed to sunlight had higher efficiency than those exposed to LED light, with the PBT/Au/Ag membrane showing the highest dye removal at 97% within 90 min. The modified membranes showed reuse potential, with dye removal efficiency decreasing from 97% in the first cycle to 85% in the fifth cycle.

19.
Sci Total Environ ; 905: 167137, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734618

RESUMO

Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.


Assuntos
Máscaras , Polipropilenos , Humanos , Meio Ambiente , Poliésteres , Efeito Estufa
20.
Materials (Basel) ; 16(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176299

RESUMO

In this work, a miniaturized and highly sensitive microwave sensor based on a complementary split-ring resonator (CSRR) is proposed for the detection of liquid materials. The modeled sensor was designed based on the CSRR structure with triple rings (TRs) and a curve feed for improved measurement sensitivity. The designed sensor oscillates at a single frequency of 2.5 GHz, which is simulated using an Ansys HFSS simulator. The electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Five variations of the liquid media under tests (MUTs) are simulated and measured. These liquid MUTs are as follows: without a sample (without a tube), air (empty tube), ethanol, methanol, and distilled water (DI). A detailed sensitivity calculation is performed for the resonance band at 2.5 GHz. The MUTs mechanism is performed with a polypropylene tube (PP). The samples of dielectric material are filled into PP tube channels and loaded into the CSRR center hole; the E-fields around the sensor affect the relationship with the liquid MUTs, resulting in a high Q-factor value. The final sensor has a Q-factor value and sensitivity of 520 and 7.032 (MHz)/εr) at 2.5 GHz, respectively. Due to the high sensitivity of the presented sensor for characterizing various liquid penetrations, the sensor is also of interest for accurate estimations of solute concentrations in liquid media. Finally, the relationship between the permittivity and Q-factor value at the resonant frequency is derived and investigated. These given results make the presented resonator ideal for the characterization of liquid materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA