Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.187
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5290-5307.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922899

RESUMO

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Animais , Humanos , Cromatina , Montagem e Desmontagem da Cromatina , Proteínas Nucleares/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos
2.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33412089

RESUMO

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Assuntos
Anticorpos Neutralizantes/imunologia , Biomarcadores/análise , COVID-19/imunologia , COVID-19/fisiopatologia , Adulto , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Biomarcadores/sangue , COVID-19/sangue , COVID-19/epidemiologia , Comorbidade , Coronavirus/classificação , Coronavirus/fisiologia , Reações Cruzadas , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/análise , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Análise de Sobrevida , Resultado do Tratamento
3.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733997

RESUMO

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Assuntos
Caspase 1 , Microscopia Crioeletrônica , Interleucina-18 , Transdução de Sinais , Interleucina-18/metabolismo , Caspase 1/metabolismo , Humanos , Inflamassomos/metabolismo , Animais , Conformação Proteica , Ligação Proteica , Sítios de Ligação , Camundongos , Receptores de Interleucina-18/metabolismo , Modelos Moleculares , Peptídeos e Proteínas de Sinalização Intercelular
4.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36738738

RESUMO

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Assuntos
Inflamação , Fosforilação Oxidativa , Humanos , Camundongos , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Homeostase , Lipídeos , Tecido Adiposo/metabolismo
5.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506694

RESUMO

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Assuntos
Monócitos , Células-Tronco , Camundongos , Humanos , Animais , Fenótipo , Células Cultivadas , Células Dendríticas , Diferenciação Celular
6.
Mol Cell ; 83(4): 507-522.e6, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36630954

RESUMO

Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Reparo do DNA , Nucleossomos , Humanos , Adenosina Trifosfatases/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética
7.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922872

RESUMO

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Assuntos
Histonas , RNA Polimerase II , Humanos , Histonas/genética , Histonas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Transcrição Gênica , Cromatina/genética , Processamento Alternativo
8.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
9.
Mol Cell ; 82(23): 4428-4442.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395771

RESUMO

Transcriptional control is a highly dynamic process that changes rapidly in response to various cellular and extracellular cues, making it difficult to define the mechanism of transcription factor function using slow genetic methods. We used a chemical-genetic approach to rapidly degrade a canonical transcriptional activator, PAX3-FOXO1, to define the mechanism by which it regulates gene expression programs. By coupling rapid protein degradation with the analysis of nascent transcription over short time courses and integrating CUT&RUN, ATAC-seq, and eRNA analysis with deep proteomic analysis, we defined PAX3-FOXO1 function at a small network of direct transcriptional targets. PAX3-FOXO1 degradation impaired RNA polymerase pause release and transcription elongation at most regulated gene targets. Moreover, the activity of PAX3-FOXO1 at enhancers controlling this core network was surprisingly selective, affecting single elements in super-enhancers. This combinatorial analysis indicated that PAX3-FOXO1 was continuously required to maintain chromatin accessibility and enhancer architecture at regulated enhancers.


Assuntos
Proteômica , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , RNA Polimerases Dirigidas por DNA , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição
10.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32579887

RESUMO

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Assuntos
Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Mielopoese/fisiologia , Neutrófilos/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula Única
11.
Mol Cell ; 81(3): 530-545.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382982

RESUMO

Transcription factors regulate gene networks controlling normal hematopoiesis and are frequently deregulated in acute myeloid leukemia (AML). Critical to our understanding of the mechanism of cellular transformation by oncogenic transcription factors is the ability to define their direct gene targets. However, gene network cascades can change within minutes to hours, making it difficult to distinguish direct from secondary or compensatory transcriptional changes by traditional methodologies. To overcome this limitation, we devised cell models in which the AML1-ETO protein could be quickly degraded upon addition of a small molecule. The rapid kinetics of AML1-ETO removal, when combined with analysis of transcriptional output by nascent transcript analysis and genome-wide AML1-ETO binding by CUT&RUN, enabled the identification of direct gene targets that constitute a core AML1-ETO regulatory network. Moreover, derepression of this gene network was associated with RUNX1 DNA binding and triggered a transcription cascade ultimately resulting in myeloid differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , RNA Neoplásico/biossíntese , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Transcrição Gênica , Acetilação , Sítios de Ligação , Ligação Competitiva , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Sangue Fetal/citologia , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Células-Tronco Hematopoéticas/patologia , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Neoplásico/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Transcriptoma
12.
Mol Cell ; 81(8): 1732-1748.e8, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33730542

RESUMO

During self-renewal, cell-type-defining features are drastically perturbed in mitosis and must be faithfully reestablished upon G1 entry, a process that remains largely elusive. Here, we characterized at a genome-wide scale the dynamic transcriptional and architectural resetting of mouse pluripotent stem cells (PSCs) upon mitotic exit. We captured distinct waves of transcriptional reactivation with rapid induction of stem cell genes and transient activation of lineage-specific genes. Topological reorganization at different hierarchical levels also occurred in an asynchronous manner and showed partial coordination with transcriptional resetting. Globally, rapid transcriptional and architectural resetting associated with mitotic retention of H3K27 acetylation, supporting a bookmarking function. Indeed, mitotic depletion of H3K27ac impaired the early reactivation of bookmarked, stem-cell-associated genes. However, 3D chromatin reorganization remained largely unaffected, suggesting that these processes are driven by distinct forces upon mitotic exit. This study uncovers principles and mediators of PSC molecular resetting during self-renewal.


Assuntos
Cromatina/genética , Código das Histonas/genética , Histonas/genética , Mitose/genética , Células-Tronco Pluripotentes/fisiologia , Acetilação , Animais , Linhagem Celular , Drosophila/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/genética , Ativação Transcricional/genética
13.
Mol Cell ; 78(2): 261-274.e5, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32155413

RESUMO

RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Resposta ao Choque Térmico/genética , Humanos , Camundongos , Nucleossomos/genética , Regiões Promotoras Genéticas
14.
Mol Cell ; 78(4): 785-793.e8, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32229306

RESUMO

RNA polymerase II (RNAPII) transcription is governed by the pre-initiation complex (PIC), which contains TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, RNAPII, and Mediator. After initiation, RNAPII enzymes pause after transcribing less than 100 bases; precisely how RNAPII pausing is enforced and regulated remains unclear. To address specific mechanistic questions, we reconstituted human RNAPII promoter-proximal pausing in vitro, entirely with purified factors (no extracts). As expected, NELF and DSIF increased pausing, and P-TEFb promoted pause release. Unexpectedly, the PIC alone was sufficient to reconstitute pausing, suggesting RNAPII pausing is an inherent PIC function. In agreement, pausing was lost upon replacement of the TFIID complex with TATA-binding protein (TBP), and PRO-seq experiments revealed widespread disruption of RNAPII pausing upon acute depletion (t = 60 min) of TFIID subunits in human or Drosophila cells. These results establish a TFIID requirement for RNAPII pausing and suggest pause regulatory factors may function directly or indirectly through TFIID.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Células HCT116 , Humanos , Ligação Proteica , RNA Polimerase II/metabolismo , Fator de Transcrição TFIID/genética
15.
Annu Rev Pharmacol Toxicol ; 63: 449-469, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36151051

RESUMO

Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.


Assuntos
Anexina A1 , Humanos , Anexina A1/metabolismo , Anexina A1/uso terapêutico , Qualidade de Vida , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipídeos
16.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650565

RESUMO

Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.


Assuntos
Células-Tronco Germinativas Adultas , Células Germinativas , Masculino , Humanos , Espermatozoides , Oócitos , Diferenciação Celular
17.
Semin Immunol ; 59: 101605, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660338

RESUMO

Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Mediadores da Inflamação/uso terapêutico , Imunidade
18.
Proc Natl Acad Sci U S A ; 120(4): e2218162120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669099

RESUMO

Resolution of inflammation and mucosal wound healing are crucial processes required to re-establish homeostasis following injury of mucosal tissues. Maresin-2 (MaR2), a lipid specialized pro-resolving mediator derived from omega-3 polyunsaturated fatty acid, has been reported to promote resolution of inflammation. However, a potential role for MaR2 in regulating mucosal repair remains undefined. Using lipidomic analyses, we demonstrate biosynthesis of MaR2 in healing intestinal mucosal wounds in vivo. Importantly, administration of exogenous MaR2 promoted mucosal repair following dextran sulfate sodium-induced colitis or biopsy-induced colonic mucosal injury. Functional analyses revealed that MaR2 promotes mucosal wound repair by driving intestinal epithelial migration through activation of focal cell-matrix adhesion signaling in primary human intestinal epithelial cells. Because of its labile nature, MaR2 is easily degradable and requires ultracold storage to maintain functionality. Thus, we created thermostable polylactic acid MaR2 nanoparticles that retain biological activity following extended storage at 4 °C or above. Taken together, these results establish MaR2 as a potent pro-repair lipid mediator with broad therapeutic potential for use in promoting mucosal repair in inflammatory diseases.


Assuntos
Colite , Nanopartículas , Humanos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Intestinos , Mucosa Intestinal/fisiologia , Inflamação , Sulfato de Dextrana/efeitos adversos
19.
Proc Natl Acad Sci U S A ; 120(13): e2214851120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943888

RESUMO

Behavioral change is essential to mitigate climate change. To advance current knowledge, we synthesize research on interventions aiming to promote climate change mitigation behaviors in field settings. In a preregistered second-order meta-analysis, we assess the overall effect of 10 meta-analyses, incorporating a total of 430 primary studies. In addition, we assess subgroup analyses for six types of interventions, five behaviors, and three publication bias adjustments. Results showed that climate change mitigation interventions were generally effective (dunadjusted = 0.31, 95% CI [0.30, 0.32]). A follow-up analysis using only unique primary studies, adjusted for publication bias, provides a more conservative overall estimate (d = 0.18, 95% CI [0.13, 0.24]). This translates into a mean treatment effect of 7 percentage points. Furthermore, in a subsample of adequately powered large-scale interventions (n > 9,000, k = 32), the effect was adjusted downward to approximately 2 percentage points. This discrepancy might be because large-scale interventions often target nonvoluntary participants by less direct techniques (e.g., "home energy reports") while small-scale interventions often target voluntary participants by more direct techniques (e.g., face-to-face interactions). Subgroup analyses showed that interventions based on social comparisons or financial incentives were the most effective, while education or feedback was the least effective. These results provide a comprehensive state-of-the-art summary of climate change mitigation interventions, guiding both future research and practice.


Assuntos
Mudança Climática , Humanos , Comportamento
20.
Proc Natl Acad Sci U S A ; 120(2): e2206480120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595677

RESUMO

The resolution of infection is an active process with specific molecular and cellular mechanisms that temper inflammation and enhance pathogen clearance. Here, the specialized pro-resolving mediator (SPM) Maresin 1 (MaR1) inhibited respiratory syncytial virus (RSV)-induced inflammation. inlerleukin-13 production from type 2 innate lymphoid cells (ILC) and CD4 T helper type 2 cells was decreased by exogenous MaR1. In addition, MaR1 increased amphiregulin production and decreased RSV viral transcripts to promote resolution. MaR1 also promoted interferon-ß production in mouse lung tissues and also in pediatric lung slices. MaR1 significantly inhibited the RSV-triggered aberrant inflammatory phenotype in FoxP3-expressing Tregs. The receptor for MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was constitutively expressed on Tregs. Following RSV infection, mice lacking Lgr6 had exacerbated type 2 immune responses with an increased viral burden and blunted responses to MaR1. Together, these findings have uncovered a multi-pronged protective signaling axis for MaR1-Lgr6, improving Tregs's suppressive function and upregulating host antiviral genes resulting in decreased viral burden and pathogen-mediated inflammation, ultimately promoting restoration of airway mucosal homeostasis.


Assuntos
Pneumonia Viral , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Imunidade Inata , Linfócitos , Inflamação , Ácidos Docosa-Hexaenoicos/farmacologia , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA