Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2406654121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116129

RESUMO

Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.


Assuntos
Edição de Genes , Pulmão , Nanopartículas , Animais , Edição de Genes/métodos , Pulmão/metabolismo , Camundongos , Nanopartículas/química , Cães , Coelhos , Humanos , Sistemas CRISPR-Cas , Sistemas de Liberação de Medicamentos/métodos
2.
Mol Ther ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066478

RESUMO

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.

3.
Nano Lett ; 24(18): 5593-5602, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619365

RESUMO

The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.


Assuntos
Nanopartículas , Polímeros , Animais , Polímeros/química , Nanopartículas/química , Humanos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/química , Sistemas de Liberação de Medicamentos , Fenóis/química , Estresse Oxidativo/efeitos dos fármacos , Ácidos Borônicos/química , Retina/metabolismo , Camundongos
4.
Small ; 20(27): e2310743, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38263812

RESUMO

Chronic wounds have emerged as an increasingly critical clinical challenge over the past few decades, due to their increasing incidence and socioeconomic burdens. Platelet-derived growth factor (PDGF) plays a pivotal role in regulating processes such as fibroblast migration, proliferation, and vascular formation during the wound healing process. The delivery of PDGF offers great potential for expediting the healing of chronic wounds. However, the clinical effectiveness of PDGF in chronic wound healing is significantly hampered by its inability to maintain a stable concentration at the wound site over an extended period. In this study, a controlled PDGF delivery system based on nanocapsules is proposed. In this system, PDGF is encapsulated within a degradable polymer shell. The release rate of PDGF from these nanocapsules can be precisely adjusted by controlling the ratios of two crosslinkers with different degradation rates within the shells. As demonstrated in a diabetic wound model, improved therapeutic outcomes with PDGF nanocapsules (nPDGF) treatment are observed. This research introduces a novel PDGF delivery platform that holds promise for enhancing the effectiveness of chronic wound healing.


Assuntos
Preparações de Ação Retardada , Nanocápsulas , Fator de Crescimento Derivado de Plaquetas , Cicatrização , Cicatrização/efeitos dos fármacos , Nanocápsulas/química , Fator de Crescimento Derivado de Plaquetas/administração & dosagem , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Preparações de Ação Retardada/química , Humanos , Camundongos
5.
Bioorg Med Chem ; 111: 117835, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053075

RESUMO

Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.


Assuntos
Peptídeos Penetradores de Células , Cisteína Endopeptidases , Imunoglobulina G , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Humanos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cátions/química , Peptídeos/química , Peptídeos/farmacologia , Células HeLa , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química
6.
Mol Ther ; 31(7): 2257-2265, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905119

RESUMO

Electroporation of the Cas9 ribonucleoprotein (RNP) complex offers the advantage of preventing off-target cleavages and potential immune responses produced by long-term expression of the nuclease. Nevertheless, the majority of engineered high-fidelity Streptococcus pyogenes Cas9 (SpCas9) variants are less active than the wild-type enzyme and are not compatible with RNP delivery. Building on our previous studies on evoCas9, we developed a high-fidelity SpCas9 variant suitable for RNP delivery. The editing efficacy and precision of the recombinant high-fidelity Cas9 (rCas9HF), characterized by the K526D substitution, was compared with the R691A mutant (HiFi Cas9), which is currently the only available high-fidelity Cas9 that can be used as an RNP. The comparative analysis was extended to gene substitution experiments where the two high fidelities were used in combination with a DNA donor template, generating different ratios of non-homologous end joining (NHEJ) versus homology-directed repair (HDR) for precise editing. The analyses revealed a heterogeneous efficacy and precision indicating different targeting capabilities between the two variants throughout the genome. The development of rCas9HF, characterized by an editing profile diverse from the currently used HiFi Cas9 in RNP electroporation, increases the genome editing solutions for the highest precision and efficient applications.


Assuntos
Sistemas CRISPR-Cas , Streptococcus pyogenes , Streptococcus pyogenes/genética , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Eletroporação
7.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001384

RESUMO

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Assuntos
Lipossomos , Retina , Camundongos , Humanos , Animais , Distribuição Tecidual , Retina/metabolismo , Transdução de Sinal Luminoso , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Cálcio/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495347

RESUMO

Multicolor single-molecule tracking (SMT) provides a powerful tool to mechanistically probe molecular interactions in living cells. However, because of the limitations in the optical and chemical properties of currently available fluorophores and the multiprotein labeling strategies, intracellular multicolor SMT remains challenging for general research studies. Here, we introduce a practical method employing a nanopore-electroporation (NanoEP) technique to deliver multiple organic dye-labeled proteins into living cells for imaging. It can be easily expanded to three channels in commercial microscopes or be combined with other in situ labeling methods. Utilizing NanoEP, we demonstrate three-color SMT for both cytosolic and membrane proteins. Specifically, we simultaneously monitored single-molecule events downstream of EGFR signaling pathways in living cells. The results provide detailed resolution of the spatial localization and dynamics of Grb2 and SOS recruitment to activated EGFR along with the resultant Ras activation.


Assuntos
Nanoporos , Proteínas/metabolismo , Imagem Individual de Molécula , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Linfócitos T/metabolismo
9.
Nano Lett ; 23(8): 3653-3660, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36848135

RESUMO

Delivery of proteins and protein-nucleic acid constructs into live cells enables a wide range of applications from gene editing to cell-based therapies and intracellular sensing. However, electroporation-based protein delivery remains challenging due to the large sizes of proteins, their low surface charge, and susceptibility to conformational changes that result in loss of function. Here, we use a nanochannel-based localized electroporation platform with multiplexing capabilities to optimize the intracellular delivery of large proteins (ß-galactosidase, 472 kDa, 75.38% efficiency), protein-nucleic acid conjugates (protein spherical nucleic acids (ProSNA), 668 kDa, 80.25% efficiency), and Cas9-ribonucleoprotein complex (160 kDa, ∼60% knock-out and ∼24% knock-in) while retaining functionality post-delivery. Importantly, we delivered the largest protein to date using a localized electroporation platform and showed a nearly 2-fold improvement in gene editing efficiencies compared to previous reports. Furthermore, using confocal microscopy, we observed enhanced cytosolic delivery of ProSNAs, which may expand opportunities for detection and therapy.


Assuntos
Sistemas CRISPR-Cas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Edição de Genes , Eletroporação , Proteínas/genética
10.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930850

RESUMO

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7). The cloning, overexpression, and purification of PTEN variants were achieved from E. coli, followed by successful binding to CNTs. Cell incubation with protein-functionalized CNTs revealed that the full-length PTEN-CNTs significantly inhibited cancer cell growth and stimulated apoptosis in ZR-75-1 and MCF-7 cells, while truncated PTEN fragments on CNTs had a lesser effect. The N-terminal fragment, despite possessing the active site, did not have the same effect as the full length PTEN, emphasizing the necessity of interaction with the C2 domain in the C-terminal tail. Our findings highlight the efficacy of full-length PTEN in inhibiting cancer growth and inducing apoptosis through the alteration of the expression levels of key apoptotic markers. In addition, the utilization of carbon nanotubes as a potent PTEN protein delivery system provides valuable insights for future applications in in vivo models and clinical studies.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Nanotubos de Carbono , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Nanotubos de Carbono/química , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química
11.
Angew Chem Int Ed Engl ; 63(21): e202400926, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38529812

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are porous nanomaterials that offer exceptional biocompatibility and versatility for integrating proteins for biomedical applications. This minireview concisely discusses recent advancements in the chemistry and functionality of protein-HOF interfaces. It particularly focuses on strategic methodologies, such as the careful selection of building blocks and the genetic engineering of proteins, to facilitate protein-HOF interactions. We examine the role of enzyme encapsulation within HOFs, highlighting its capability to preserve enzyme function, a crucial aspect for applications in biosensing and disease diagnosis. Moreover, we discuss the emerging utility of nanoscale HOFs for intracellular protein delivery, illustrating their applicability as nanoreactors for intracellular catalysis and neuroprotective biorthogonal catalysis within cellular compartments. We highlight the significant advancement of designing biodegradable HOFs tailored for cytosolic protein delivery, underscoring their promising application in targeted cancer therapies. Finally, we provide a perspective viewpoint on the design of biocompatible protein-HOF assemblies, underlining their promising prospects in drug delivery, disease diagnosis, and broader biomedical applications.


Assuntos
Ligação de Hidrogênio , Proteínas , Humanos , Proteínas/química , Proteínas/metabolismo , Materiais Biocompatíveis/química , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos
12.
Small ; 19(8): e2204620, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456203

RESUMO

Protein assemblies have drawn much attention as platforms for biomedical applications, including gene/drug delivery and vaccine, due to biocompatibility and functional diversity. Here, the construction and functionalization of a protein assembly composed of human clathrin heavy chain and light chain for a targeted protein delivery, is presented. The clathrin heavy and light chains are redesigned and associated with each other, and the resulting triskelion unit further self-assembled into a clathrin assembly with the size of about 28 nm in diameter. The clathrin assembly is dual-functionalized with a protein cargo and a targeting moiety using two different orthogonal protein-ligand pairs through one-pot reaction. The functionalized clathrin assembly exhibits about a 900-fold decreased KD value for a cell-surface target due to avidity compared to a native targeting moiety. The utility of the clathrin assembly is demonstrated by an efficient delivery of a protein cargo into tumor cells in a target-specific manner, resulting in a strong cytotoxic effect. The present approach can be used in the creation of protein assemblies with multimodality.


Assuntos
Clatrina , Sistemas de Liberação de Medicamentos , Humanos , Clatrina/metabolismo
13.
Chemistry ; 29(22): e202300131, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36662543

RESUMO

Intracellular protein delivery has attracted considerable attention in the development of protein-based therapeutics, however, the design of highly efficient materials for robust delivery of native proteins remains challenging. This study proposes a Cu+ -based coordination polymer for cytosolic protein delivery with high efficacy and robustness. The phenylthiourea grafted dendrimer is coordinated with cuprous ions to prepare the polymeric carrier, which efficiently bind cargo proteins via a combination of coordination, ionic and hydrophobic interactions. The incorporation of Cu+ ions in the polymer greatly improves its cellular uptake and endosomal escape. The cuprous-based coordination polymer successfully delivered a variety of structurally diverse proteins into various cell lines with reserved bioactivities. This study provides a new type of coordination polymers for cytosolic delivery of biomacromolecules.


Assuntos
Dendrímeros , Dendrímeros/química , Endossomos/metabolismo , Polímeros/química , Proteínas/metabolismo , Tioureia , Cobre/química
14.
Biotechnol Bioeng ; 120(5): 1437-1448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710503

RESUMO

Targeting nucleic targets with therapeutic proteins would enhance the treatment of hard-to-treat cancers. However, exogenous proteins are excluded from the nucleus by both the cellular and nuclear membranes. We have recently developed Salmonella that deliver active proteins into the cytoplasm of cancer cells. Here, we hypothesized that bacterially delivered proteins accumulate within nuclei, nuclear localization sequences (NLSs) increase delivery, and bacterially delivered proteins kill cancer cells. To test this hypothesis, we developed intranuclear delivering (IND) Salmonella and quantified the delivery of three model proteins. IND Salmonella delivered both ovalbumin and green fluorescent protein to nuclei of MCF7 cancer cells. The amount of protein in nuclei was linearly dependent on the amount delivered to the cytoplasm. The addition of a NLSs increased both the amount of protein in each nucleus and the number of nuclei that received protein. Delivery of Omomyc, a protein inhibitor of the nuclear transcript factor, Myc, altered cell physiology, and significantly induced cell death. These results show that IND Salmonella deliver functional proteins to the nucleus of cancerous cells. Extending this method to other transcription factors will increase the number of accessible targets for cancer therapy.


Assuntos
Núcleo Celular , Neoplasias , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
15.
Mol Pharm ; 20(10): 4868-4882, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37708383

RESUMO

Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.

16.
Mol Pharm ; 20(6): 3210-3222, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150945

RESUMO

Intracellular delivery of therapeutic biomacromolecules, including nucleic acids and proteins, attracts extensive attention in biotherapeutics for various diseases. Herein, a strategy is proposed for the construction of poly(disulfide)s for the efficient delivery of both nucleic acids and proteins into cells. A convenient photo-cross-linking polymerization was adopted between disulfide bonds in two modified lipoic acid monomers (Zn coordinated with dipicolylamine analogue (ZnDPA) and guanidine (GUA)). The disulfide-containing main chain of the resulting poly(disulfide)s was responsive to reducing circumstance, facilitating the release of cargos. By screening the feeding ratio of ZnDPA and GUA, the resulting poly(disulfide)s exhibited better performance in the delivery of nucleic acids including plasmid DNA and siRNA than commercially available transfection reagents. Cellular uptake results revealed that the polymer/cargo complexes entered the cells mainly following a thiol-mediated uptake pathway. Meanwhile, the polymer could also efficiently deliver proteins into cells without an obvious loss of protein activity, showing the versatility of the poly(disulfide)s for the delivery of various biomacromolecules. Moreover, the in vivo therapeutic effect of the materials was verified in the E.G7-OVA tumor-bearing mice. Ovalbumin-based nanovaccine induced a strong cellular immune response, especially cytotoxic T lymphocyte cellular immune response, and inhibited tumor growth. These results revealed the promise of the poly(disulfide)s in the application of both gene therapy and immunotherapy.


Assuntos
Neoplasias , Ácido Tióctico , Camundongos , Animais , Dissulfetos/química , Polímeros/química , DNA , Imunoterapia , Neoplasias/terapia
17.
Mol Pharm ; 20(5): 2465-2476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36961431

RESUMO

Water-free preparation of protein delivery systems has the potential to overcome the limitations of hydrogel depot systems such as off-target reactions, functional group hydrolysis, and limited loading capacity. However, a major roadblock in the development and use of these systems is administration as implantation is often required. In this study, we developed a biodegradable and water-free injectable protein delivery system via inverse electron demand Diels-Alder reaction between norbornene- and tetrazine-functionalized four-armed poly(ethylene glycol) macromonomers. 1:1 mixtures of these precursors gelled rapidly in situ, taking less than 11 s to reach their gelation point. Methyl substitution of tetrazine slowed the gelation time and increased the cross-linking density, whereas oxygen incorporation into norbornene changed the mechanical properties. Introduction of hydrolytically cleavable groups enabled biodegradability. Using phenyl carbamate and phenyl carbonate ester groups, we could tune the stability. Controlled release of the protein surrogate glucose oxidase was achieved over a period of 500 days. The novel preparation method presented here is a promising step toward the development of water-free injectable protein depots for controlled drug delivery.


Assuntos
Polietilenoglicóis , Polímeros , Preparações de Ação Retardada , Hidrogéis , Sistemas de Liberação de Medicamentos , Proteínas
18.
Nano Lett ; 22(20): 8294-8303, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239583

RESUMO

Microbial resistance to antibiotics is one of the greatest global healthcare challenges. There is an urgent need to develop effective strategies to overcome antimicrobial resistance. We, herein, report photoinduced in situ growth of a cationic polymer from the N-terminus of lysozyme. The attachment of the cationic polymer improves the proteolytic and thermal stability of lysozyme. Notably, the conjugate can efficiently overcome lysozyme resistance in Gram-positive bacteria and antibiotics-resistance in Gram-negative bacteria, which may be ascribed to the synergistic interactions of lysozyme and the cationic polymer with the bacteria to disrupt their cell membranes. In a rat periodontitis model, the lysozyme-polymer conjugate not only greatly outperforms lysozyme in therapeutic efficacy but also is superior to minocycline hydrochloride, which is the gold standard for periodontitis therapy. These findings may provide an efficient strategy to dramatically enhance the antimicrobial activities of lysozyme and pave a way to overcome antimicrobial resistance.


Assuntos
Antibacterianos , Muramidase , Ratos , Animais , Muramidase/farmacologia , Antibacterianos/farmacologia , Polímeros/farmacologia , Minociclina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
19.
Nano Lett ; 22(20): 8233-8240, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173109

RESUMO

Intracellular protein delivery has attracted increasing attentions in biomedical applications. However, current delivery systems usually have poor serum stability due to the competitive binding of serum proteins to the polymers during delivery. Here, we report a reversible cross-linking strategy to improve the serum stability of polymers for robust intracellular protein delivery. In the proposed delivery system, nanoparticles are assembled by cargo proteins and cationic polymers and further stabilized by a glutathione-cleavable and traceless cross-linker. The cross-linked nanoparticles show high stability and efficient cell internalization in serum containing medium and can release the cargo proteins in response to intracellular glutathione and acidic pH in a traceless manner. The generality and versatility of the proposed strategy were demonstrated on different types of cationic polymers, cargo proteins, as well as cell lines. The study provides a facile and efficient method for improving the serum tolerance of cationic polymers in intracellular protein delivery.


Assuntos
Nanopartículas , Polímeros , Cátions , Glutationa , Sistemas de Liberação de Medicamentos
20.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069293

RESUMO

Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.


Assuntos
Quitosana , Hidrogéis , Humanos , Hidrogéis/química , Polímeros/química , Proteínas , Quitosana/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA