Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 186(15): 3307-3324.e30, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385249

RESUMO

The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.


Assuntos
Mitocôndrias , Proteoma , Proteoma/metabolismo , Mitocôndrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometria de Massas/métodos , Regulação da Expressão Gênica
2.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33080218

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Splicing de RNA , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Interferons/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Células Vero , Proteínas não Estruturais Virais/química
3.
Annu Rev Biochem ; 88: 487-514, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220978

RESUMO

Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.


Assuntos
Exossomos/metabolismo , Animais , Transporte Biológico , Exossomos/imunologia , Exossomos/fisiologia , Exossomos/ultraestrutura , Matriz Extracelular/metabolismo , Humanos , Neoplasias , Doenças Neurodegenerativas , Multimerização Proteica , Transdução de Sinais
4.
Annu Rev Cell Dev Biol ; 35: 131-168, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31399000

RESUMO

Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.


Assuntos
Endossomos/química , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Proteínas de Transporte Vesicular/genética , Animais , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
5.
Annu Rev Cell Dev Biol ; 34: 29-58, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30110558

RESUMO

Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.


Assuntos
Adesão Celular/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Transporte Proteico/genética , Receptores de Fatores de Crescimento/genética , Membrana Celular/genética , Núcleo Celular/genética , Endossomos/genética , Humanos , Fosfotransferases/genética
6.
Cell ; 167(4): 1041-1051.e11, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881302

RESUMO

Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.


Assuntos
Colesterol/metabolismo , Simulação de Dinâmica Molecular , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Químicos
7.
Annu Rev Biochem ; 84: 813-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621510

RESUMO

Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.


Assuntos
Eritrócitos/parasitologia , Plasmodium/fisiologia , Animais , Apicomplexa/classificação , Apicomplexa/fisiologia , Humanos , Malária/imunologia , Malária/parasitologia , Sinais Direcionadores de Proteínas , Proteínas/metabolismo , Infecções por Protozoários/imunologia , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/metabolismo
8.
Mol Cell ; 82(5): 1066-1077.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245450

RESUMO

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.


Assuntos
Núcleo Celular , Complexo Piruvato Desidrogenase , Acetilcoenzima A/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Laminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membrana Nuclear/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
9.
Physiol Rev ; 101(1): 319-352, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584192

RESUMO

The extracellular domain of plasma membrane integrin αvß3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvß3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvß3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.


Assuntos
Integrinas/fisiologia , Hormônios Tireóideos/fisiologia , Animais , Humanos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Transdução de Sinais , Tiroxina/fisiologia , Tri-Iodotironina
10.
Proc Natl Acad Sci U S A ; 121(19): e2321190121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687783

RESUMO

Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.


Assuntos
Bacteriófagos , Núcleo Celular , Transporte Proteico , Proteínas Virais , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófagos/metabolismo , Bacteriófagos/genética , Núcleo Celular/metabolismo , Replicação Viral
11.
Mol Cell Proteomics ; 23(5): 100761, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593903

RESUMO

Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.


Assuntos
Retículo Endoplasmático , Polissacarídeos , Transporte Proteico , Humanos , Glicosilação , Retículo Endoplasmático/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/metabolismo , Membrana Celular/metabolismo , Dobramento de Proteína , Proteômica/métodos , Glicoproteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Processamento de Proteína Pós-Traducional
12.
Traffic ; 24(3): 146-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479968

RESUMO

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Assuntos
Vírus Hendra , Lyssavirus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Ribossômico , Lyssavirus/genética , Lyssavirus/metabolismo , Ribossomos/metabolismo , Vírus Hendra/genética , Vírus Hendra/metabolismo , Fatores de Transcrição
13.
Semin Cell Dev Biol ; 139: 3-12, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35918217

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Sinapses/genética , Sinapses/metabolismo , Doenças Neurodegenerativas/metabolismo , Transtornos Cognitivos/patologia , Fatores de Risco
14.
J Biol Chem ; : 107833, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343005

RESUMO

The voltage-gated sodium (NaV) channel is critical for cardiomyocyte function since it is responsible for action potential initiation and its propagation throughout the cell. It consists of a protein complex made of a pore forming α subunit and associated ß subunits, which regulate α subunit function and subcellular localization. We previously showed the implication of N-linked glycosylation and S-acylation of ß2 in its polarized trafficking. Here, we present evidence of ß2 dimerization. Moreover, we demonstrate the implication of the cytoplasmic tail, extracellular loop, and transmembrane domain on proper ß2 folding and export to the cell surface of polarized Madin-Darby canine kidney cells. Substantial alteration, or lack of any of these domains, leads to accumulation of ß2 in the endoplasmic reticulum, along with impaired complex N-glycosylation, which is needed for its efficient surface delivery. We also show that these alterations to ß2 affected to certain extent NaV1.5 surface localization. Conversely, however, NaV1.5 had little or no influence on ß2 trafficking, its localization to the surface, or homodimer formation. Altogether, our data link the architecture of the ß2 domains to the establishment of its proper subcellular localization. These findings could provide valuable insights to gain a deeper comprehension of the elusive biology of ß subunits in excitable cells, such as neurons and cardiomyocytes.

15.
J Biol Chem ; 300(9): 107696, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168183

RESUMO

An ever-growing number of studies highlight the importance of S-acylation, a reversible protein-lipid modification, for diverse aspects of intracellular signaling. In this review, we summarize the current understanding of how S-acylation regulates perhaps the best-known class of signaling enzymes, protein kinases. We describe how S-acylation acts as a membrane targeting signal that localizes certain kinases to specific membranes, and how such membrane localization in turn facilitates the assembly of signaling hubs consisting of an S-acylated kinase's upstream activators and/or downstream targets. We further discuss recent findings that S-acylation can control additional aspects of the function of certain kinases, including their interactions and, surprisingly, their activity, and how such regulation might be exploited for potential therapeutic gain. We go on to describe the roles and regulation of de-S-acylases and how extracellular signals drive dynamic (de)S-acylation of certain kinases. We discuss how S-acylation has the potential to lead to "emergent properties" that alter the temporal profile and/or salience of intracellular signaling events. We close by giving examples of other S-acylation-dependent classes of signaling enzymes and by discussing how recent biological and technological advances should facilitate future studies into the functional roles of S-acylation-dependent signaling.

16.
J Biol Chem ; 300(8): 107536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971317

RESUMO

Protein disulfide isomerase-A1 (PDIA1) is a master regulator of oxidative protein folding and proteostasis in the endoplasmic reticulum (ER). However, PDIA1 can reach the extracellular space, impacting thrombosis and other pathophysiological phenomena. Whether PDIA1 is externalized via passive release or active secretion is not known. To investigate how PDIA1 negotiates its export, we generated a tagged variant that undergoes N-glycosylation in the ER (Glyco-PDIA1). Addition of N-glycans does not alter its enzymatic functions. Upon either deletion of its KDEL ER-localization motif or silencing of KDEL receptors, Glyco-PDIA1 acquires complex glycans in the Golgi and is secreted. In control cells, however, Glyco-PDIA1 is released with endoglycosidase-H sensitive glycans, implying that it does not follow the classical ER-Golgi route nor does it encounter glycanases in the cytosol. Extracellular Glyco-PDIA1 is more abundant than actin, lactate dehydrogenase, or other proteins released by damaged or dead cells, suggesting active transport through a Golgi-independent route. The strategy we describe herein can be extended to dissect how select ER-residents reach the extracellular space.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Isomerases de Dissulfetos de Proteínas , Transporte Proteico , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Complexo de Golgi/metabolismo , Humanos , Glicosilação , Espaço Extracelular/metabolismo , Células HeLa , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Polissacarídeos/metabolismo , Animais , Células HEK293
17.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272225

RESUMO

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Assuntos
Clatrina , Proteínas SNARE , Humanos , Acetilglucosamina/metabolismo , Clatrina/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo , Animais , Acetilação , Glucose/metabolismo
18.
EMBO J ; 40(3): e106862, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399250

RESUMO

Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
19.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37272231

RESUMO

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo
20.
Mol Cell ; 65(1): 52-65, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27916661

RESUMO

Tetrameric assembly of channel subunits in the endoplasmic reticulum (ER) is essential for surface expression and function of K+ channels, but the molecular mechanism underlying this process remains unclear. In this study, we found through genetic screening that ER-located J-domain-containing chaperone proteins (J-proteins) are critical for the biogenesis and physiological function of ether-a-go-go-related gene (ERG) K+ channels in both Caenorhabditis elegans and human cells. Human J-proteins DNAJB12 and DNAJB14 promoted tetrameric assembly of ERG (and Kv4.2) K+ channel subunits through a heat shock protein (HSP) 70-independent mechanism, whereas a mutated DNAJB12 that did not undergo oligomerization itself failed to assemble ERG channel subunits into tetramers in vitro and in C. elegans. Overexpressing DNAJB14 significantly rescued the defective function of human ether-a-go-go-related gene (hERG) mutant channels associated with long QT syndrome (LQTS), a condition that predisposes to life-threatening arrhythmia, by stabilizing the mutated proteins. Thus, chaperone proteins are required for subunit stability and assembly of K+ channels.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canal de Potássio ERG1/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Canais de Potássio/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Células HEK293 , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Potenciais da Membrana , Chaperonas Moleculares , Mutação , Miócitos Cardíacos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA