Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.612
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39353437

RESUMO

Complex structural variations (cxSVs) are often overlooked in genome analyses due to detection challenges. We developed ARC-SV, a probabilistic and machine-learning-based method that enables accurate detection and reconstruction of cxSVs from standard datasets. By applying ARC-SV across 4,262 genomes representing all continental populations, we identified cxSVs as a significant source of natural human genetic variation. Rare cxSVs have a propensity to occur in neural genes and loci that underwent rapid human-specific evolution, including those regulating corticogenesis. By performing single-nucleus multiomics in postmortem brains, we discovered cxSVs associated with differential gene expression and chromatin accessibility across various brain regions and cell types. Additionally, cxSVs detected in brains of psychiatric cases are enriched for linkage with psychiatric GWAS risk alleles detected in the same brains. Furthermore, our analysis revealed significantly decreased brain-region- and cell-type-specific expression of cxSV genes, specifically for psychiatric cases, implicating cxSVs in the molecular etiology of major neuropsychiatric disorders.

2.
Cell ; 186(23): 5165-5182.e33, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852259

RESUMO

Schizophrenia (SCZ) is a highly heritable mental disorder with thousands of associated genetic variants located mostly in the noncoding space of the genome. Translating these associations into insights regarding the underlying pathomechanisms has been challenging because the causal variants, their mechanisms of action, and their target genes remain largely unknown. We implemented a massively parallel variant annotation pipeline (MVAP) to perform SCZ variant-to-function mapping at scale in disease-relevant neural cell types. This approach identified 620 functional variants (1.7%) that operate in a highly developmental context and neuronal-activity-dependent manner. Multimodal integration of epigenomic and CRISPRi screening data enabled us to link these functional variants to target genes, biological processes, and ultimately alterations of neuronal physiology. These results provide a multistage prioritization strategy to map functional single-nucleotide polymorphism (SNP)-to-gene-to-endophenotype relations and offer biological insights into the context-dependent molecular processes modulated by SCZ-associated genetic variation.


Assuntos
Esquizofrenia , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Animais , Camundongos , Sequenciamento de Nucleotídeos em Larga Escala
3.
Cell ; 179(7): 1469-1482.e11, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835028

RESUMO

Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.


Assuntos
Pleiotropia Genética , Predisposição Genética para Doença , Transtornos Mentais/genética , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Humanos , Neurogênese
4.
Cell ; 174(3): 505-520, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053424

RESUMO

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Assuntos
Mapeamento Cromossômico/métodos , Transtornos do Neurodesenvolvimento/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neurobiologia/métodos , Neuropsiquiatria
5.
Annu Rev Neurosci ; 46: 341-358, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37018916

RESUMO

The field of stereotactic neurosurgery developed more than 70 years ago to address a therapy gap for patients with severe psychiatric disorders. In the decades since, it has matured tremendously, benefiting from advances in clinical and basic sciences. Deep brain stimulation (DBS) for severe, treatment-resistant psychiatric disorders is currently poised to transition from a stage of empiricism to one increasingly rooted in scientific discovery. Current drivers of this transition are advances in neuroimaging, but rapidly emerging ones are neurophysiological-as we understand more about the neural basis of these disorders, we will more successfully be able to use interventions such as invasive stimulation to restore dysfunctional circuits to health. Paralleling this transition is a steady increase in the consistency and quality of outcome data. Here, we focus on obsessive-compulsive disorder and depression, two topics that have received the most attention in terms of trial volume and scientific effort.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Estimulação Encefálica Profunda/métodos , Depressão , Procedimentos Neurocirúrgicos/métodos , Transtorno Obsessivo-Compulsivo/cirurgia , Neuroimagem
6.
Physiol Rev ; 103(2): 1645-1665, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634217

RESUMO

Genome-wide association studies (GWASs) have ushered in a new era of reproducible discovery in psychiatric genetics. The field has now identified hundreds of common genetic variants that are associated with mental disorders, and many of them influence more than one disorder. By advancing the understanding of causal biology underlying psychopathology, GWAS results are poised to inform the development of novel therapeutics, stratification of at-risk patients, and perhaps even the revision of top-down classification systems in psychiatry. Here, we provide a concise review of GWAS findings with an emphasis on findings that have elucidated the shared genetic etiology of psychopathology, summarizing insights at three levels of analysis: 1) genome-wide architecture; 2) networks, pathways, and gene sets; and 3) individual variants/genes. Three themes emerge from these efforts. First, all psychiatric phenotypes are heritable, highly polygenic, and influenced by many pleiotropic variants with incomplete penetrance. Second, GWAS results highlight the broad etiological roles of neuronal biology, system-wide effects over localized effects, and early neurodevelopment as a critical period. Third, many loci that are robustly associated with multiple forms of psychopathology harbor genes that are involved in synaptic structure and function. Finally, we conclude our review by discussing the implications that GWAS results hold for the field of psychiatry, as well as expected challenges and future directions in the next stage of psychiatric genetics.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Transtornos Mentais/genética , Fenótipo
7.
Bioessays ; 46(10): e2300246, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39258367

RESUMO

Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.


Assuntos
Biomarcadores , Saúde Mental , Humanos , Biomarcadores/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/diagnóstico , Pesquisadores , Saliva/química , Saliva/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(49): e2305773120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011552

RESUMO

Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.


Assuntos
Glucocorticoides , Transtornos Mentais , Humanos , Ensaios de Triagem em Larga Escala , Sequências Reguladoras de Ácido Nucleico , Locos de Características Quantitativas , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
9.
Front Neuroendocrinol ; : 101159, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39489468

RESUMO

Autoimmune thyroid disease (AITD) is the most common organ-specific autoimmune disease, characterized by thyroid function disorder and autoimmune imbalance. Previous studies have demonstrated the decreased quality of life and neuropsychiatric manifestations in AITD patients, including anxiety, depression, cognitive impairment and affective disorder. These problems also plague the euthyroid AITD patients. Advanced neuroimaging techniques were well carried out and employed as an explanatory instrument for the above intriguing phenomenon. In recent years, an increasing number of neuroimaging studies have reported that these neuropsychiatric manifestations are accompanied by significant structural and functional brain alterations in AITD patients, mainly involved in neurocognitive and emotional regions, despite the underlying neurobiological mechanism is still unclear. The existing studies suggest that the potential pathogenesis of the neuropsychiatric manifestations and brain alterations does not depend on a single factor, but may result from a combination of thyroid function dysfunction, metabolic disorders, dysregulated autoimmune and trans-synaptic degeneration.

10.
Hum Genomics ; 18(1): 20, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395944

RESUMO

BACKGROUND: De novo mutations (DNMs) are variants that occur anew in the offspring of noncarrier parents. They are not inherited from either parent but rather result from endogenous mutational processes involving errors of DNA repair/replication. These spontaneous errors play a significant role in the causation of genetic disorders, and their importance in the context of molecular diagnostic medicine has become steadily more apparent as more DNMs have been reported in the literature. In this study, we examined 46,489 disease-associated DNMs annotated by the Human Gene Mutation Database (HGMD) to ascertain their distribution across gene and disease categories. RESULTS: Most disease-associated DNMs reported to date are found to be associated with developmental and psychiatric disorders, a reflection of the focus of sequencing efforts over the last decade. Of the 13,277 human genes in which DNMs have so far been found, the top-10 genes with the highest proportions of DNM relative to gene size were H3-3 A, DDX3X, CSNK2B, PURA, ZC4H2, STXBP1, SCN1A, SATB2, H3-3B and TUBA1A. The distribution of CADD and REVEL scores for both disease-associated DNMs and those mutations not reported to be de novo revealed a trend towards higher deleteriousness for DNMs, consistent with the likely lower selection pressure impacting them. This contrasts with the non-DNMs, which are presumed to have been subject to continuous negative selection over multiple generations. CONCLUSION: This meta-analysis provides important information on the occurrence and distribution of disease-associated DNMs in association with heritable disease and should make a significant contribution to our understanding of this major type of mutation.


Assuntos
Células Germinativas , Pais , Humanos , Mutação
11.
EMBO Rep ; 24(1): e55197, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36367221

RESUMO

Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.


Assuntos
Transtornos Mentais , Retroelementos , Humanos , Retroelementos/genética , Estudo de Associação Genômica Ampla , Genoma , Loci Gênicos , Transtornos Mentais/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular
18.
Nature ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454030
19.
Nature ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210014
20.
Nature ; 634(8036): 1025-1026, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39433557
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA