Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 196: 121-128, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33882363

RESUMO

Circular RNAs with covalently linked ends are generated from many eukaryotic protein-coding genes when the pre-mRNA splicing machinery backsplices. These mature transcripts are resistant to digestion by exonucleases and typically have much longer half-lives than their associated linear mRNAs. Circular RNAs thus have great promise as sensitive biomarkers, including for detection of transcriptional activity. Here, we show that circular RNAs can serve as markers of readthrough transcription events in Drosophila and human cells, thereby revealing mechanistic insights into RNA polymerase II transcription termination as well as pre-mRNA 3' end processing. We describe methods that take advantage of plasmids that generate a circular RNA when an upstream polyadenylation signal fails to be used and/or RNA polymerase II fails to terminate. As a proof-of-principle, we show that RNAi-mediated depletion of well-established transcription termination factors, including the RNA endonuclease Cpsf73, results in increased circular RNA output from these plasmids in Drosophila and human cells. This method is generalizable as a circular RNA can be easily encoded downstream of any genomic region of interest. Circular RNA biomarkers, therefore, have great promise for identifying novel cellular factors and conditions that impact transcription termination processes.


Assuntos
Poliadenilação , RNA Circular , Biomarcadores , Poliadenilação/genética , RNA/genética , RNA/metabolismo , Splicing de RNA/genética , RNA Circular/genética
2.
Mol Biol Rep ; 48(2): 1493-1503, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33590411

RESUMO

Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p < 0.05). Moreover, ZFP36L2 inhibition led to increased cell cycle arrest and decreased cell proliferation. Downstream analysis showed that the sub-lethal dose of temozolomide and siZFP26L2 caused major upregulation of BCL2-associated X, apoptosis regulator (BAX). ZFP36L2 has oncogenic and chemosensitive characteristics and may play an important role in gliomagenesis through cell proliferation, cell cycle arrest and apoptosis. This suggests that RNAi combined with chemotherapy treatment such as temozolomide may be a potential GBM therapeutic intervention in the future.


Assuntos
Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Fatores de Transcrição/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Trends Genet ; 33(9): 604-615, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28732598

RESUMO

High-throughput imaging (HTI) is a powerful tool in the discovery of cellular disease mechanisms. While traditional approaches to identify disease pathways often rely on knowledge of the causative genetic defect, HTI-based screens offer an unbiased discovery approach based on any morphological or functional defects of disease cells or tissues. In this review, we provide an overview of the use of HTI for the study of human disease mechanisms. We discuss key technical aspects of HTI and highlight representative examples of its practical applications for the discovery of molecular mechanisms of disease, focusing on infectious diseases and host-pathogen interactions, cancer, and rare genetic diseases. We also present some of the current challenges and possible solutions offered by novel cell culture systems and genome engineering approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Microscopia
4.
Proc Natl Acad Sci U S A ; 111(12): 4548-53, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616511

RESUMO

Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen. We find that the majority of phenotypic effects of siRNAs are unrelated to the intended "on-target" mechanism, defined by full complementarity of the 21-nt siRNA sequence to a target mRNA. Instead, phenotypes are largely dictated by "off-target" effects resulting from partial complementarity of siRNAs to multiple mRNAs via the "seed" region (i.e., nucleotides 2-8), reminiscent of the way specificity is determined for endogenous microRNAs. Quantitative analysis enabled the prediction of seeds that strongly and specifically block infection, independent of the intended on-target effect. This prediction was confirmed experimentally by designing oligos that do not have any on-target sequence match at all, yet can strongly reproduce the predicted phenotypes. Our results suggest that published RNAi screens have primarily, and unintentionally, screened the sequence space of microRNA seeds instead of the intended on-target space of protein-coding genes. This helps to explain why previously published RNAi screens have exhibited relatively little overlap. Our analysis suggests a possible way of identifying "seed reagents" for controlling phenotypes of interest and establishes a general strategy for extracting valuable untapped information from past and future RNAi screens.


Assuntos
Brucella abortus/efeitos dos fármacos , Bunyaviridae/efeitos dos fármacos , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Interferência de RNA , Salmonella typhimurium/efeitos dos fármacos , Sequência de Bases , Brucella abortus/genética , Bunyaviridae/genética , Genes Bacterianos , Células HeLa , Humanos , RNA Interferente Pequeno/genética , Salmonella typhimurium/genética
5.
Proc Natl Acad Sci U S A ; 111(37): 13421-6, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197055

RESUMO

Enhanced protein synthesis capacity is associated with increased tumor cell survival, proliferation, and resistance to chemotherapy. Cancers like multiple myeloma (MM), which display elevated activity in key translation regulatory nodes, such as the PI3K/mammalian target of rapamycin and MYC-eukaryotic initiation factor (eIF) 4E pathways, are predicted to be particularly sensitive to therapeutic strategies that target this process. To identify novel vulnerabilities in MM, we undertook a focused RNAi screen in which components of the translation apparatus were targeted. Our screen was designed to identify synthetic lethal relationships between translation factors or regulators and dexamethasone (DEX), a corticosteroid used as frontline therapy in this disease. We find that suppression of all three subunits of the eIF4F cap-binding complex synergizes with DEX in MM to induce cell death. Using a suite of small molecules that target various activities of eIF4F, we observed that cell survival and DEX resistance are attenuated upon eIF4F inhibition in MM cell lines and primary human samples. Levels of MYC and myeloid cell leukemia 1, two known eIF4F-responsive transcripts and key survival factors in MM, were reduced upon eIF4F inhibition, and their independent suppression also synergized with DEX. Inhibition of eIF4F in MM exerts pleotropic effects unraveling a unique therapeutic opportunity.


Assuntos
Dexametasona/uso terapêutico , Fator de Iniciação 4F em Eucariotos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dexametasona/farmacologia , Genes Modificadores , Humanos , Terapia de Alvo Molecular , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA/efeitos dos fármacos , Supressão Genética/efeitos dos fármacos , Triterpenos/farmacologia
6.
Cardiovasc Drugs Ther ; 30(3): 281-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27095116

RESUMO

PURPOSE: Understanding of the mechanisms of vascular smooth muscle cells (VSMCs) phenotypic regulation is critically important to identify novel candidates for future therapeutic intervention. While HTS approaches have recently been used to identify novel regulators in many cell lines, such as cancer cells and hematopoietic stem cells, no studies have so far systematically investigated the effect of gene inactivation on VSMCs with respect to cell survival and growth response. METHODS AND RESULTS: 257 out of 2000 genes tested resulted in an inhibition of cell proliferation in HaoSMCs. After pathway analysis, 38 significant genes were selected for further study. 23 genes were confirmed to inhibit proliferation, and 13 genes found to induce apoptosis in the synthetic phenotype. 11 genes led to an aberrant nuclear phenotype indicating a central role in cell mitosis. 4 genes affected the cell migration in synthetic HaoSMCs. Using computational biological network analysis, 11 genes were identified to have an indirect or direct interaction with the Osteopontin pathway. For 10 of those genes, levels of proteins downstream of the Osteopontin pathway were found to be down-regulated, using RNAi methodology. CONCLUSIONS: A phenotypic high-throughput siRNA screen could be applied to identify genes relevant for the cell biology of HaoSMCs. Novel genes were identified which play a role in proliferation, apoptosis, mitosis and migration of HaoSMCs. These may represent potential drug candidates in the future.


Assuntos
Aorta/citologia , Miócitos de Músculo Liso/metabolismo , Osteopontina/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteopontina/genética , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais
7.
Zoolog Sci ; 33(6): 583-591, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27927092

RESUMO

The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ßß subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.


Assuntos
Córnea/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Interferência de RNA , Animais , Proteínas de Drosophila/genética , Nanoestruturas/ultraestrutura , Fenômenos Ópticos , Propriedades de Superfície
8.
Proc Natl Acad Sci U S A ; 110(30): 12361-6, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836664

RESUMO

Human embryonic stem cells (hESCs) can be induced and differentiated to form a relatively homogeneous population of neuronal precursors in vitro. We have used this system to screen for genes necessary for neural lineage development by using a pooled human short hairpin RNA (shRNA) library screen and massively parallel sequencing. We confirmed known genes and identified several unpredicted genes with interrelated functions that were specifically required for the formation or survival of neuronal progenitor cells without interfering with the self-renewal capacity of undifferentiated hESCs. Among these are several genes that have been implicated in various neurodevelopmental disorders (i.e., brain malformations, mental retardation, and autism). Unexpectedly, a set of genes mutated in late-onset neurodegenerative disorders and with roles in the formation of RNA granules were also found to interfere with neuronal progenitor cell formation, suggesting their functional relevance in early neurogenesis. This study advances the feasibility and utility of using pooled shRNA libraries in combination with next-generation sequencing for a high-throughput, unbiased functional genomic screen. Our approach can also be used with patient-specific human-induced pluripotent stem cell-derived neural models to obtain unparalleled insights into developmental and degenerative processes in neurological or neuropsychiatric disorders with monogenic or complex inheritance.


Assuntos
Diferenciação Celular , Genoma Humano , Neurônios/citologia , Células-Tronco/citologia , Transtorno Autístico/genética , Inativação Gênica , Marcação de Genes , Humanos , Deficiência Intelectual/genética , Neurônios/metabolismo , RNA/metabolismo , Células-Tronco/metabolismo
9.
Plant Cell Physiol ; 56(4): 737-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588389

RESUMO

Proper positioning of the nucleus is critical for the functioning of various cells. Actin and myosin have been shown to be crucial for the localization of the nucleus in plant cells, whereas microtubule (MT)-based mechanisms are commonly utilized in animal and fungal cells. In this study, we combined live cell microscopy with RNA interference (RNAi) screening or drug treatment and showed that MTs and a plant-specific motor protein, armadillo repeat-containing kinesin (kinesin-ARK), are required for nuclear positioning in the moss Physcomitrella patens. In tip-growing protonemal apical cells, the nucleus was translocated to the center of the cell after cell division in an MT-dependent manner. When kinesin-ARKs were knocked down using RNAi, the initial movement of the nucleus towards the center took place normally; however, before reaching the center, the nucleus was moved back to the basal edge of the cell. In intact (control) cells, MT bundles that are associated with kinesin-ARKs were frequently observed around the moving nucleus. In contrast, such MT bundles were not identified after kinesin-ARK down-regulation. An in vitro MT gliding assay showed that kinesin-ARK is a plus-end-directed motor protein. These results indicate that MTs and the MT-based motor drive nuclear migration in the moss cells, thus showing a conservation of the mechanism underlying nuclear localization among plant, animal and fungal cells.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Núcleo Celular/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Actinas/metabolismo , Proteínas do Domínio Armadillo/química , Bryopsida/citologia , Bryopsida/metabolismo , Divisão Celular , Proteínas de Plantas/química
10.
Cancer Lett ; 585: 216646, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38262497

RESUMO

Approximately 51 non-small-cell lung cancer (NSCLC) risk loci have been identified by genome-wide association studies (GWASs). We conducted a high throughput RNA-interference (RNAi) screening to identify the candidate causal genes in NSCLC risk loci. KIAA0391 at 14q13.1 had the highest score and could promote proliferation and metastasis of NSCLC in vitro and in vivo. We next prioritized rs3783313 as a causal variant at 14q13.1, by integrating a large-scale population study consisting of 27,120 lung cancer cases and 27,355 controls, functional annotation, and expression quantitative trait locus (eQTL) analysis. Then we found that rs3783313 could facilitate a promoter-enhancer interaction to upregulate KIAA0391 expression by affecting the affinity of transcription factor NFYA. Mechanistically, KIAA0391 knockdown dramatically influenced pyroptosis-related pathways and increased the expression of CASP1. And KIAA0391 transcriptionally repressed CASP1 by binding to SMAD2 and induced an anti-pyroptosis phenotype, promoting tumorigenesis of NSCLC, which provides new insights and potential target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Piroptose/genética
11.
Biofactors ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983968

RESUMO

Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.

12.
Front Cell Infect Microbiol ; 13: 1204707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475965

RESUMO

Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Interferência de RNA , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Flagelos/metabolismo
13.
Genomics Proteomics Bioinformatics ; 20(6): 1180-1196, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34923124

RESUMO

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which is still the leading cause of mortality from a single infectious disease worldwide. The development of novel anti-TB drugs and vaccines is severely hampered by the complicated and time-consuming genetic manipulation techniques for M. tuberculosis. Here, we harnessed an endogenous type III-A CRISPR/Cas10 system of M. tuberculosis for efficient gene editing and RNA interference (RNAi). This simple and easy method only needs to transform a single mini-CRISPR array plasmid, thus avoiding the introduction of exogenous protein and minimizing proteotoxicity. We demonstrated that M. tuberculosis genes can be efficiently and specifically knocked in/out by this system as confirmed by DNA high-throughput sequencing. This system was further applied to single- and multiple-gene RNAi. Moreover, we successfully performed genome-wide RNAi screening to identify M. tuberculosis genes regulating in vitro and intracellular growth. This system can be extensively used for exploring the functional genomics of M. tuberculosis and facilitate the development of novel anti-TB drugs and vaccines.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Edição de Genes , Interferência de RNA , Tuberculose/prevenção & controle , Tuberculose/genética , Tuberculose/microbiologia , Antituberculosos/metabolismo , Sistemas CRISPR-Cas
14.
Genome Biol ; 23(1): 162, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879727

RESUMO

Two-dimensional high-throughput data have become increasingly common in functional genomics studies, which raises new challenges in data analysis. Here, we introduce a new statistic called Zeta, initially developed to identify global splicing regulators from a two-dimensional RNAi screen, a high-throughput screen coupled with high-throughput functional readouts, and ZetaSuite, a software package to facilitate general application of the Zeta statistics. We compare our approach with existing methods using multiple benchmarked datasets and then demonstrate the broad utility of ZetaSuite in processing public data from large-scale cancer dependency screens and single-cell transcriptomics studies to elucidate novel biological insights.


Assuntos
Ensaios de Triagem em Larga Escala , Transcriptoma , Genômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Interferência de RNA , Análise de Célula Única , Software
15.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35804895

RESUMO

In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC.

16.
Genomics Proteomics Bioinformatics ; 19(1): 108-122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33610792

RESUMO

The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus-host protein-protein interaction networks can reveal cellular pathways critical to viral replication and disease pathogenesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as critical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for further studies of flavivirus-host interactions, disease pathogenesis, and new drug targets.


Assuntos
Vírus da Dengue , Dengue/genética , Complexo de Endopeptidases do Proteassoma , Infecção por Zika virus , Zika virus , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Biologia de Sistemas , Replicação Viral , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/genética
17.
ACS Appl Mater Interfaces ; 13(42): 49713-49728, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34657415

RESUMO

Antimicrobial/anticancer peptides (AMPs/ACPs) have shown promising results as new therapeutic agents in cancer thearpy. Among them, the designed amphiphilic α-helical peptide G(IIKK)3I-NH2 (G3) displayed great affinity and specificity in targeting cancer cells. Here, we report new insights on how G3 penetrates cancer cells. G3 showed high specificity to HCT-116 colon cancer cells compared to the HDFs (human neonatal primary dermal fibroblasts) control. With high concentrations of peptide, a clear cancer cell membrane disruption was observed through SEM. Gene knockdown of the endocytic pathways demonstrated that an energy-dependent endocytic pathway is required for the uptake of the peptide. In addition, G3 can protect and selectively deliver siRNAs into cancer cells and successfully modulated their gene expression. Gene delivery was also tested in 3D cancer spheroids and showed deep penetration delivery into the cancer spheroids. Finally, the in vivo toxicity of G3 was evaluated on zebrafish embryos, showing an increasing toxicity effect with concentration. However, the toxicity of the peptide was attenuated when complexed with siRNA. In addition, negligible toxicity was observed at the concentration range for efficient gene delivery. The current results demonstrate that G3 is promising as an excellent agent for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Técnicas de Transferência de Genes , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , RNA Interferente Pequeno/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Teste de Materiais , Neoplasias/genética , Neoplasias/patologia , Peptídeos/síntese química , Peptídeos/química , RNA Interferente Pequeno/genética , Esferoides Celulares/patologia , Peixe-Zebra/embriologia
18.
Trends Parasitol ; 37(7): 585-587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975779

RESUMO

Schistosomes cause untold disease and disability in the developing world. Here, we introduce SchistoCyte Atlas, a web-based platform for exploring gene expression at single-cell resolution in adult Schistosoma mansoni. Similar resources accessible to non-specialists across the globe will expedite our ability to understand the biology of these devastating parasites.


Assuntos
Proteínas de Helminto/genética , Schistosoma mansoni/genética , Transcriptoma , Animais , Proteínas de Helminto/metabolismo , Estágios do Ciclo de Vida/genética , Schistosoma mansoni/metabolismo
19.
Biomedicines ; 9(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203351

RESUMO

Human epidermal growth factor receptor (EGFR) 2 (HER2) is overexpressed/amplified in about 25% of all breast cancers, and EGFR is overexpressed in up to 76% and amplified in up to 24% of triple-negative breast cancers (TNBC). Here, we aimed to identify inhibitors that may enhance the anti-tumor activity of neratinib for HER2+ breast cancer and TNBC. By conducting a non-biased high-throughput RNA interference screening, we identified PI3K/AKT/mTOR and MAPK as two potential inhibitory synergistic canonical pathways. We confirmed that everolimus (mTOR inhibitor) and trametinib (MEK inhibitor) enhances combinatorial anti-proliferative effects with neratinib under anchorage-independent growth conditions (p < 0.05). Compared to single agent neratinib, the combination therapies significantly enhanced tumor growth inhibition in both SUM190 HER2+ breast cancer (neratinib plus everolimus, 77%; neratinib plus trametinib, 77%; p < 0.0001) and SUM149 TNBC (neratinib plus everolimus, 71%; neratinib plus trametinib, 81%; p < 0.0001) xenograft models. Compared to single-agent neratinib, everolimus, or trametinib, both everolimus plus neratinib and trametinib plus neratinib significantly suppressed proliferation marker Ki67 and enhanced antitumor efficacy by activating the apoptosis pathway shown by increased Bim and cleaved-PARP expression. Taken together, our data justify new neratinib-based combinations for both HER2+ breast cancer and TNBC.

20.
Antioxidants (Basel) ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943039

RESUMO

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA