Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149146

RESUMO

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Humanos , Linhagem Celular , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
2.
Mol Divers ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833125

RESUMO

Breast cancer (BC) poses a significant global health threat, necessitating innovative therapeutic approaches. The ribosomal s6 kinase 2 (RSK2) has emerged as a promising target due to its roles in cell proliferation and survival. This study proposes a drug-drug conjugate prodrug comprising Methotrexate (hydrophobic) and Capecitabine (hydrophilic) for BC treatment. In silico approaches, including Molecular Docking, Molecular Dynamics Simulations, MM-PBSA, ADME, and DFT calculations were employed to evaluate the prodrug's potential. The designed MET-CAP ligand exhibits a robust docking score (-8.980 kcal/mol), superior binding affinity (-53.16 kcal/mol), and stable dynamic behavior (0.62 nm) compared to native ligands. The DFT results reveal intramolecular charge transfer in MET-CAP (HLG = 0.09 eV), indicating its potential as a BC inhibitor. ADME analysis suggests satisfactory pharmaceutically relevant properties. The results indicate that the conjugated MET-CAP ligand exhibits favorable binding characteristics, stability, and pharmaceutically relevant properties, making it a potential RSK2 inhibitor for BC therapy. The multifaceted approach provides insights into binding interactions, stability, and pharmacokinetic properties, laying the foundation for further experimental validation and potential clinical development.

3.
Cancer Sci ; 114(12): 4691-4705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840379

RESUMO

B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Linhagem Celular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Proteínas de Transporte , Proteínas de Choque Térmico/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
4.
J Hepatol ; 79(3): 704-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201672

RESUMO

BACKGROUND & AIMS: Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS: We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS: RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or ß-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS: Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or ß-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS: This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or ß-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Proteína Axina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mutação , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 642: 66-74, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566564

RESUMO

p90 Ribosomal S6 kinase 2 (RSK2), a member of mitogen-activated protein kinase regulating cell proliferation and transformation induced by tumor promoters, such as epidermal growth factor, plays a vital role as a signaling hub to modulate cell proliferation, transformation, cell cycle transition, and chromatin remodeling by tumor promoter stimulation such as epidermal growth factor. On the other hand, the RSK2-mediated signaling networks that regulate cancer cell proliferation are unclear. In this study, SKOV3, an ovarian cancer cell that exhibits chemoresistant properties, and TOV-112D cells showed different sensitivities to colony growth in soft agar. Based on the protein profile shown in a previous report, RSK2 knockdown preferentially and significantly suppressed cell proliferation and colony growth. Moreover, RSK2 interacted with AKTs (AKT 1-3) via the N-terminal kinase domain (NTKD) of RSK2, resulting in the phosphorylation of RSK2. The AKT-mediated phosphorylation consensus sequence, RxRxxS/T, on RSK2 NTKD (Thr115) was well conserved in different species. In particular, an in vitro kinase assay showed that NTKD deleted and Thr115Ala mutants of RSK2 abolished AKT1-mediated phosphorylation. In the physiological assay of RSK2 phosphorylation at Thr115 on cell proliferation, AKT1-mediated RSK2 phosphorylation at Thr115 played an essential role in cell proliferation. The re-introduction of RSK2-T115A to RSK2-/- MEF attenuated the EGF-induced G1/S cell cycle transition compared to RSK2-wt introducing RSK2-/- MEFs. This attenuation was observed by EGF stimulations and insulin-like growth factor-1. Overall, these results show that novel wiring of the AKT/RSKs signaling axis plays an important role in cancer cell proliferation by modulating the G1/S cell cycle transition.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias Ovarianas , Feminino , Humanos , Fator de Crescimento Epidérmico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proliferação de Células , Transdução de Sinais , Fosforilação , Ciclo Celular , Carcinógenos
6.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328342

RESUMO

Multiple myeloma (MM) is characterized by remarkable cytogenetic/molecular heterogeneity among patients and intraclonal diversity even in a single patient. We previously demonstrated that PDPK1, the master kinase of series of AGC kinases, is universally active in MM, and plays pivotal roles in cell proliferation and cell survival of myeloma cells regardless of the profiles of cytogenetic and genetic abnormalities. This study investigated the therapeutic efficacy and mechanism of action of dual blockade of two major PDPK1 substrates, RSK2 and AKT, in MM. The combinatory treatment of BI-D1870, an inhibitor for N-terminal kinase domain (NTKD) of RSK2, and ipatasertib, an inhibitor for AKT, showed the additive to synergistic anti-tumor effect on human MM-derived cell lines (HMCLs) with active RSK2-NTKD and AKT, by enhancing apoptotic induction with BIM and BID activation. Moreover, the dual blockade of RSK2 and AKT exerted robust molecular effects on critical gene sets associated with myeloma pathophysiologies, such as those with MYC, mTOR, STK33, ribosomal biogenesis, or cell-extrinsic stimuli of soluble factors, in HMCLs. These results provide the biological and molecular rationales for the dual-targeting strategy for RSK2 and AKT, which may overcome the therapeutic difficulty due to cytogenetic/molecular heterogeneity in MM.


Assuntos
Mieloma Múltiplo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
7.
J Hepatol ; 74(2): 360-371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918955

RESUMO

BACKGROUND & AIMS: Mutational profiling of patient tumors has suggested that hepatocellular carcinoma (HCC) development is mainly driven by loss-of-function mutations in tumor suppressor genes. p90 ribosomal S6 kinase 2 (RSK2) functions as a direct downstream kinase of ERK1/2 and elevated RSK2 expression has been reported to support oncogenic functions in some cancers. We investigated if RSK2 was also dysregulated by inactivating mutations in cancers including HCC. METHODS: We performed exome sequencing and targeted DNA sequencing on HBV-associated HCCs to examine recurrent RSK2 mutations. The functional significance and mechanistic consequences of RSK2 mutations were examined in natural RSK2-null HCC cells, and RSK2-knockout HCC cells. The potential downstream pathways underlying RSK2 mutations were investigated by RNA sequencing, qRT-PCR and mass spectrometry. RESULTS: We detected recurrent somatic RSK2 mutations at a rate of 6.3% in our HCC cohorts and revealed that, among many cancer types, HCC was the cancer most commonly harboring RSK2 mutations. The RSK2 mutations were inactivating and associated with a more aggressive tumor phenotype. We found that, functionally, restoring RSK2 expression in natural RSK2-null HBV-positive Hep3B cells suppressed proliferation and migration in vitro and tumorigenicity in vivo. Mechanistically, RSK2-inactivating mutations attenuated a SOS1/2-dependent negative feedback loop, leading to the activation of MAPK signaling. Of note, this RSK2 mutation-mediated MAPK upregulation rendered HCC cells more sensitive to sorafenib, a first-line multi-kinase inhibitor for advanced HCC. Furthermore, such activation of MAPK signaling enhanced cholesterol biosynthesis-related gene expression in HCC cells. CONCLUSIONS: Our findings reveal the mechanistic and functional significance of RSK2-inactivating mutations in HCC. These inactivating mutations may serve as an alternative route to activate MAPK signaling and cholesterol metabolism in HCC. LAY SUMMARY: In this study, we identified and functionally characterized RSK2-inactivating mutations in human hepatocellular carcinoma and demonstrated their association with aggressive tumor behavior. Mutations in RSK2 drive signaling pathways with known oncogenic potential, leading to enhanced cholesterol biosynthesis and potentially sensitizing tumors to sorafenib treatment.


Assuntos
Carcinoma Hepatocelular , Colesterol , Neoplasias Hepáticas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Sequenciamento do Exoma
8.
J Enzyme Inhib Med Chem ; 36(1): 1798-1809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34348556

RESUMO

Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4" position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.


Assuntos
Benzopiranos/síntese química , Monossacarídeos/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Sequência de Aminoácidos , Benzopiranos/metabolismo , Carbamatos/química , Humanos , Cinética , Modelos Moleculares , Monossacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Ramnose/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Relação Estrutura-Atividade
9.
Mar Drugs ; 19(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564169

RESUMO

Manzamines are complex polycyclic marine-derived ß-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.


Assuntos
Antineoplásicos/uso terapêutico , Carbazóis/uso terapêutico , Poríferos , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos , Carbazóis/química , Carbazóis/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular
10.
Proc Natl Acad Sci U S A ; 115(2): E190-E199, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279389

RESUMO

Directed migration is essential for cell motility in many processes, including development and cancer cell invasion. RSKs (p90 ribosomal S6 kinases) have emerged as central regulators of cell migration; however, the mechanisms mediating RSK-dependent motility remain incompletely understood. We have identified a unique signaling mechanism by which RSK2 promotes cell motility through leukemia-associated RhoGEF (LARG)-dependent Rho GTPase activation. RSK2 directly interacts with LARG and nucleotide-bound Rho isoforms, but not Rac1 or Cdc42. We further show that epidermal growth factor or FBS stimulation induces association of endogenous RSK2 with LARG and LARG with RhoA. In response to these stimuli, RSK2 phosphorylates LARG at Ser1288 and thereby activates RhoA. Phosphorylation of RSK2 at threonine 577 is essential for activation of LARG-RhoA. Moreover, RSK2-mediated motility signaling depends on RhoA and -B, but not RhoC. These results establish a unique RSK2-dependent LARG-RhoA signaling module as a central organizer of directed cell migration and invasion.


Assuntos
Movimento Celular , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Células HEK293 , Humanos , Mutação , Fosforilação , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/genética , Transdução de Sinais/genética , Treonina/metabolismo , Proteínas rho de Ligação ao GTP/genética
11.
Bioorg Med Chem ; 28(5): 115303, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982240

RESUMO

The activity of p90 ribosomal S6 kinase 2 (RSK2) has emerged as an attractive target for cancer therapy due to its role in the regulation of diverse cellular processes, such as cell transformation and proliferation. Several pan-RSK inhibitors have been identified with BI-D1870 and the pseudo-analogs LJH685 and LJI308 being the most selective, potent, and frequently used small molecule inhibitors. We designed and synthesized a series of pteridinones and pyrimidines to evaluate the structural features of BI-D1870 that are required for RSK2 inhibition. We have identified inhibitors of RSK2 activity, evaluated their target engagement in cells, and measured their effect on cell viability and cytotoxicity in the MOLM-13 acute myeloid leukemia (AML) cell line. The results of our studies support that RSK2 inhibition can be achieved in MOLM-13 cells without potent cytotoxicity. The structure-activity data from this study will be used as a platform to develop novel RSK2 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pteridinas/síntese química , Pteridinas/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 114(48): 12791-12796, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133416

RESUMO

Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Interferon gama/genética , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas com Domínio T/genética , Animais , Transplante de Medula Óssea , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Feminino , Humanos , Interferon gama/imunologia , Isoenzimas/genética , Isoenzimas/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas/imunologia , Serina/metabolismo , Transdução de Sinais , Proteínas com Domínio T/imunologia , Transfecção , Irradiação Corporal Total
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(8): 929-934, 2020 Aug 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-33053534

RESUMO

OBJECTIVES: Diabetic foot ulcer (DFU), with a high rate of amputation and mortality, is a serious complication of diabetes. However, the therapeutic effect of diabetic foot is poor. This study aimed to investigate the effect of CD147 on epithelial-mesenchymal transition (EMT) process in DFU and molecular mechanisms. METHODS: Immunohistochemistry was used to reveal the expression of several proteins, such as CD147, E-cadherin, N-cadherin, Slug, and Phospho-RSK2 in DFU, non-diabetic refractory tissues, and wound margin tissues (normal blood glucose). Western blotting was used to analyze the expression of CD147 and Slug in HaCaT cells in the high-glucose environment. HaCaT cells with CD147 or RSK2 knockdown was constructed. Wound healing assay was used to test the migration capability of HaCaT cells with knockdown of CD147. Western blotting was used to detect the protein level of Slug in HaCaT cells with CD147 or RSK2 knockdown to investigate the effects of CD147 or RSK2 on EMT. Immunoprecipitation (IP) assay was used to detect the interaction between CD147 and RSK2. RESULTS: The expression levels of CD147 and Slug in the epithelial cells of marginal DFU tissues were significantly lower than those in non-diabetic refractory tissues and wound margin tissues (all P<0.05). CD147 and Slug expressions were down-regulated in HaCaT cells cultured with high glucose (all P<0.05). The migration ability of HaCaT cells with CD147 knockdown was decreased. Knockdown of CD147 or RSK2 significantly inhibited the expression of Slug. The direct interaction between RSK2 and CD147 was found via IP assay. CONCLUSIONS: CD147 could cause DFU re-epithelialization obstacle via affecting RSK2-mediated Slug/EMT process, which might be an underlying mechanism for the slow healing of DFU.


Assuntos
Basigina , Diabetes Mellitus , Pé Diabético , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Basigina/fisiologia , Pé Diabético/genética , Transição Epitelial-Mesenquimal , Humanos , Proteínas de Transporte de Cátions Orgânicos , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Cicatrização
14.
Phytother Res ; 33(3): 640-650, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30536456

RESUMO

Gossypin is a flavone extracted from Hibiscus vitifolius, which has been reported to exhibit anti-inflammatory, antioxidant, and anticancer activities. However, the anticancer properties of gossypin and its molecular mechanism of action against gastric cancer have not been fully investigated. In the present study, we report that gossypin is an Aurora kinase A (AURKA) and RSK2 inhibitor that suppresses gastric cancer growth. Gossypin attenuated anchorage-dependent and anchorage-independent gastric cancer cell growth as well as cell migration. Based on the results of in vitro screening and cell-based assays, gossypin directly binds to and inhibits AURKA and RSK2 activities and their downstream signaling proteins. Gossypin decreased S phase and increased G2/M phase cell cycle arrest by reducing the expression of cyclin A2 and cyclin B1 and the phosphorylation of the CDC protein. Additionally, gossypin also induced intrinsic apoptosis by activating caspases and PARP and increasing the expression of cytochrome c. Our results demonstrate that gossypin is an AURKA and RSK2 inhibitor that could be useful for treating gastric cancer.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Flavonoides/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Gástricas/patologia
15.
Phytother Res ; 33(9): 2337-2346, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31225674

RESUMO

Lapachol is a 1,4-naphthoquinone that is isolated from the Bignoniaceae family. It has been reported to exert anti-inflammatory, antibacterial, and anticancer activities. However, the anticancer activity of lapachol and its molecular mechanisms against esophageal squamous cell carcinoma (ESCC) cells have not been fully investigated. Herein, we report that lapachol is a novel ribosomal protein S6 kinase 2 (RSK2) inhibitor that suppresses growth and induces intrinsic apoptosis in ESCC cells. We found that lapachol strongly attenuates downstream signaling molecules of RSK2 in ESCC cells and also directly inhibits RSK2 activity in vitro. The RSK protein is highly activated in ESCC cells and knockdown of RSK2 significantly suppresses anchorage-dependent and anchorage-independent growth of ESCC cells. Additionally, lapachol inhibits anchorage-dependent and anchorage-independent growth of ESCC cells, and the inhibition of cell growth by lapachol is dependent on the expression of RSK2. We also found that lapachol induces mitochondria-mediated cellular apoptosis by activating caspases-3, -7, and PARP, inducing the expression of cytochrome c and BAX by inhibiting downstream molecules of RSK2. Overall, lapachol is a potent RSK2 inhibitor that might be used for chemotherapy against ESCC.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Naftoquinonas/uso terapêutico , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Naftoquinonas/farmacologia , Transdução de Sinais
16.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018569

RESUMO

Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Fatores de Transcrição/genética
17.
Neurobiol Dis ; 115: 69-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627578

RESUMO

Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS.


Assuntos
Síndrome de Coffin-Lowry/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Comportamento Espacial/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Síndrome de Coffin-Lowry/genética , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
18.
J Cell Biochem ; 118(11): 4080-4087, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28409880

RESUMO

Solar ultraviolet light (sUV) has been shown to promote the development of skin disorders including inflammation, photoaging, and skin carcinogenesis. Osajin is the major bioactive isoflavone present in the fruit of Maclura pomifera, commonly referred to as the Osage orange. In this study, we observed that osajin inhibited sUV-induced cyclooxygenase (COX)-2 protein expression in both HaCaT and JB6 cells. COX-2 is a major mediator of skin inflammation. sUV activated the transcription factors nuclear factor-κB and activator protein-1 which, in turn, induces COX-2 expression. Osajin inhibited transactivation of these transcription factors. We identified RSK2 as an inhibitory target of osajin by screening against 68 kinases related to inflammation. Osajin binds with RSK2 directly in an ATP-competitive manner. Computer modeling simulated a plausible binding orientation between osajin and RSK2. Osajin inhibited sUV-induced phosphorylation of histone H3, a substrate of RSK2. However, sUV-induced phosphorylation of extracellular signal-regulated kinases, p38 kinase, c-Jun N-terminal kinase and Akt, which are signaling factors upstream of RSK2, was unchanged in the presence of osajin. The anti-inflammatory effects and molecular mechanism of osajin suggest that it may have utility as a functional food for skin health and cosmetic ingredient. J. Cell. Biochem. 118: 4080-4087, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Regulação Enzimológica da Expressão Gênica , Isoflavonas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Raios Ultravioleta , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
19.
Cell Immunol ; 315: 27-33, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314444

RESUMO

This study investigated the role of PDK1 in inflammatory response which is initiated by TNF-α and analyzed the association between PDK1 and RSK2. TNF-α were added into MH7A cells to induce inflammation condition. Through overexpressing or suppressing PDK1 in MH7A cells, the role of PDK1 in cell invasiveness and inflammatory factors was determined. Levels of MMPs protein and inflammatory cytokines were assessed with PDK1 siRNA and TNF-α treatment. Inhibition of RSK2 was used to investigate the function of RSK2 on PDK1-induced inflammation. The phosphorylation of RSK2 was detected when PDK1 was inhibited. Luciferase reporter assay was performed to detect the transcriptional activity of NF-κB. We found highly expressed PDK1 could promote cell invasion and secretion of IL-1ß and IL-6 in MH7A cells. Inhibition of RSK2 reduced the PDK1-induced cell invasion and cytokines secretion in MH7A cells. In response to TNF-α, PDK1 could phosphorylate RSK2 and activated RSK2, then promoting the activation of NF-κB. This may be a possible therapeutic option of rheumatoid arthritis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Artrite Experimental/enzimologia , Artrite Reumatoide/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/biossíntese , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Linhagem Celular , Movimento Celular , Citocinas/metabolismo , Progressão da Doença , Indução Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Behav Genet ; 47(4): 434-448, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585192

RESUMO

Ribosomal s6 kinase 2 is a growth factor activated serine/threonine kinase and member of the ERK signaling pathway. Mutations in the Rsk2 gene cause Coffin-Lowry syndrome, a rare syndromic form of intellectual disability. The Rsk2 KO mouse model was shown to have learning and memory defects. We focused on the investigation of the emotional behavioral phenotype of Rsk2 KO mice mainly in the IntelliCage. They exhibited an anti-depressive, sucrose reward seeking phenotype and showed reduced anxiety. Spontaneous activity was increased in some conventional tests. However, KO mice did not show defects in place learning, working memory and motor impulsivity. In addition, we found changes of the monoaminergic system in HPLC and qRT-PCR experiments. Taken together, RSK2 not only plays a role in cognitive processes but also in emotional and reward-related behaviors.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Ansiedade/genética , Síndrome de Coffin-Lowry/genética , Depressão/genética , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA