RESUMO
Objective: To construct lentiviral-mediated EphA2 overexpression vectors, transfect them into human lens epithelial cells (HLE-B3) in vitro, and investigate the effect of EphA2 gene overexpression on the proliferation and apoptosis of HLE-B3 exposed to high-concentration dexamethasone. Methods: Experimental Study. The pCDH-CMV- MCS-EF1-RFP plasmid was set up by the digestion of NOTâ and Xbaâ double restriction enzyme and ligation of CE ligase, and then the plasmid was transformed into DH10B cells. Seven clons were picked for enzymatic digestion and the clons with correct results were chosen for sequencing. The 293 T/17 cells were co-transfected with the pCDH-CMV-MCS-EF1-RFP-EphA2 and the packaging mixture by Lipofectamine 2000. At different multiplicities of infection (MOI=20, 50, 100, and 200) after 72-hour infection, we observed the expression of RFP and morphological changes of HLE-B3 by an inverted fluorescence microscope, and calculated the transfection efficiency through the flow cytometry. EphA2 protein expression was detected by Western blot. The following experiments were divided into four groups: normal control group (group A), EphA2 overexpression vector transfection group (group B), HLE-B3 cells exposed to dexamethasone group (group C) and EphA2 overexpression vector transfection HLE-B3 cells exposed to dexamethasone group (group D). Statistical analysis method was single factor or two factors variance analysis. Cell survival rate was detected by the Cell Counting Kit-8 assay. Cell apoptosis index was detected by Tunel. Results: Restriction enzyme digestion and sequencing indicated that EphA2 cDNA fragment was successfully inserted in the vector. The infection efficiency was up to 38.6%±3.9%, 49.2%±4.2%, 79.5%±5.5% and 80.2%±6.0% when the MOI was 20, 50, 100 and 200, respectively. There was statistically significant difference (F=2 600.8, P=0.001) among the four groups and between any two groups except between the MOI=100 group and MOI=200 group (P=2.507) . The relative quantity of EphA2 protein of the normal control group, empty vector transfection group and EphA2 gene overexpression vector transfection group was (0.561 2±0.031 7) , (0.559 7±0.012 8) and (3.032 0±0.041 9) , respectively. There was statistically significant difference (F=2 646.0, P=0.001) among the three groups and between any two groups except between the normal control group and empty vector transfection group (P=0.868) . The survival rate of groups A, B, C and D was 98.18%±1.85%, 122.01%±3.89%, 52.32%±1.99% and 76.18%±3.74%, respectively. There was statistically significant difference among the four groups (F=497.6, P=0.001) . The survival rate of group B was greater than group A (P=0.001) . The survival rate of group D was greater than group C (P=0.001) . Tunel results showed that the apoptosis index of groups A, B, C and D was 5.4%±1.5%, 5.0%±1.3%, 23.0%±3.9% and 14.4%±2.7%, respectively. There was statistically significant difference among the four groups (F=397.6, P=0.001) . The apoptosis index of group B was lower than group A, but there was no statistically significant difference between them (P=0.415) ; the apoptosis index of group D was lower than group C (P=0.018). Conclusions: The lentiviral vector carrying human EphA2 gene has been successfully constructed and efficiently expressed in HLE-B3 cells. EphA2 gene overexpression could increase the HLE-B3 cell survival rate and protect HLE-B3 cells from high-concentration dexamethasone-induced reduction of the cell survival rate. EphA2 gene overexpression could protect HLE-B3 cells from high-concentration dexamethasone-induced apoptosis, but it has no remarkable effect on apoptosis of HLE-B3 cells under physiological conditions. (Chin J Ophthalmol, 2018, 54: 125-132).
Assuntos
Apoptose , Proliferação de Células , Dexametasona , Vetores Genéticos , Cristalino , Receptor EphA2 , Dexametasona/farmacologia , Células Epiteliais , Expressão Gênica , Humanos , Cristalino/metabolismo , Receptor EphA2/metabolismo , TransfecçãoRESUMO
BACKGROUND: Aging negatively impacts on the function of resident human cardiac progenitor cells (hCPCs). Effective regeneration of the injured heart requires mobilization of hCPCs to the sites of damage. In the young heart, signaling by the guidance receptor EphA2 in response to the ephrin A1 ligand promotes hCPC motility and improves cardiac recovery after infarction. METHODS AND RESULTS: We report that old hCPCs are characterized by cell-autonomous inhibition of their migratory ability ex vivo and impaired translocation in vivo in the damaged heart. EphA2 expression was not decreased in old hCPCs; however, the elevated level of reactive oxygen species in aged cells induced post-translational modifications of the EphA2 protein. EphA2 oxidation interfered with ephrin A1-stimulated receptor auto-phosphorylation, activation of Src family kinases, and caveolin-1-mediated internalization of the receptor. Cellular aging altered the EphA2 endocytic route, affecting the maturation of EphA2-containing endosomes and causing premature signal termination. Overexpression of functionally intact EphA2 in old hCPCs corrected the defects in endocytosis and downstream signaling, enhancing cell motility. Based on the ability of phenotypically young hCPCs to respond efficiently to ephrin A1, we developed a novel methodology for the prospective isolation of live hCPCs with preserved migratory capacity and growth reserve. CONCLUSIONS: Our data demonstrate that the ephrin A1/EphA2 pathway may serve as a target to facilitate trafficking of hCPCs in the senescent myocardium. Importantly, EphA2 receptor function can be implemented for the selection of hCPCs with high therapeutic potential, a clinically relevant strategy that does not require genetic manipulation of stem cells.
Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Movimento Celular/fisiologia , Miocárdio/citologia , Receptor EphA2/metabolismo , Transdução de Sinais/fisiologia , Adulto , Células-Tronco Adultas/citologia , Idoso , Células Cultivadas , Endocitose/fisiologia , Efrina-A1/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor EphA2/genética , Regeneração/fisiologia , Transferrina/metabolismoRESUMO
BACKGROUND: To determine if variations exist in the KSHV host receptor EPHA2's coding region that affect KSHV infectivity and/or KS prevalence among South African HIV-infected patients. METHODS: A retrospective candidate gene association study was performed on 150 patients which were randomly selected from a total of 756 HIV-infected patients and grouped according to their KS status and KSHV serodiagnosis; namely group 1: KS+/KSHV+; group 2: KS-/KSHV+; group 3: KS-/KSHV-. Peripheral blood DNA was used to extract DNA and PCR amplify and sequence the entire EPHA2 coding region, which was compared to the NCBI reference through multiple alignment. RESULTS: 100% (95% CI 92.9-100%) of the KS positive patients, and 31.6% (95% CI 28.3-35.1%) of the KS negative patients were found to be KSHV seropositive. Aggregate variation across the entire EPHA2 coding region identified an association with KS (OR = 6.6 (95% CI 2.8, 15.9), p = 2.2 × 10-5). This was primarily driven by variation in the functionally important protein tyrosine kinase domain (Pkinase-Tyr; OR = 4.9 (95% CI 1.9, 12.4), p = 0.001) and the sterile-α-motif (SAM; OR = 13.8 (95% CI 1.7, 111.6), p = 0.014). Mutation analysis revealed two novel, non-synonymous heterozygous variants (c.2254 T > C: OR undefined, adj. p = 0.02; and c.2990 G > T: OR undefined, adj. p = 0.04) in Pkinase-Tyr and SAM, respectively, to be statistically associated with KS; and a novel heterozygous transition (c.2727C > T: OR = 6.4 (95% CI 1.4, 28.4), adj. p = 0.03) in Pkinase-Tyr to be statistically associated with KSHV. CONCLUSIONS: Variations in the KSHV entry receptor gene EPHA2 affected susceptibility to KSHV infection and KS development in a South African HIV-infected patient cohort.
Assuntos
Efrina-A2/genética , Variação Genética , Infecções por HIV/complicações , HIV/patogenicidade , Herpesvirus Humano 8/isolamento & purificação , Sarcoma de Kaposi/epidemiologia , Adulto , Feminino , HIV/genética , Infecções por HIV/virologia , Herpesvirus Humano 8/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , Receptor EphA2 , Estudos Retrospectivos , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , África do Sul/epidemiologiaRESUMO
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with a poor prognosis. MPM grows from the mesothelial cells lining the surface of the lung and chest wall called Pleura. Exposure to asbestos is mainly linked to the development of MPM. Approximately 80% of the tumors are pleural in origin, and up to 3000 people are diagnosed with MPM in the United States annually. The incidence of MPM is expected to rise in the coming decades particularly in the developing countries. Although there is an increase in the awareness of danger associated with the use of asbestos, its use is still prevalent in Australia and Asia because of its durability and low cost. This further warns and adds to the mortality and morbidity of patients with MPM globally. The traditional treatment strategies have shown only modest improvement towards the disease. MPM is difficult to treat because of the fact that the time between the exposure to asbestos and the appearance of symptoms is extremely delayed, and also due to tumor involvement with the pleural surface and the adjoining tissues such as the chest wall, pericardium and sub-diaphragmatic organs. Despite advances in the diagnostic and treatment approaches the median survival rate for MPM is between 9 to 17 months. The standard care with double agent has shown modest improvement however, multimodality approach using novel targets may have potential to achieve the improvement in the survival rate. In this review we give an update on the conventional treatment modalities and discuss about various molecular targets including receptor EphA2, a novel target gene which may be considered as a biomarker for the diagnosis and treatment of MPM.