Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 321(5): E636-E651, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569273

RESUMO

A role for fat overfeeding in metabolic dysfunction in humans is commonly implied in the literature. Comparatively less is known about acute carbohydrate overfeeding (COF). We tested the hypothesis that COF predisposes to oxidative stress by channeling electrons away from antioxidants to support energy storage. In a study of 24 healthy human subjects with and without obesity, COF was simulated by oral administration of excess carbohydrates; a two-step hyperinsulinemic clamp was used to evaluate insulin action. The distribution of electrons between oxidative and reductive pathways was evaluated by the changes in the reduction potentials (Eh) of cytoplasmic (lactate, pyruvate) and mitochondrial (ß-hydroxybutyrate, acetoacetate) redox couples. Antioxidant redox was measured by the ratio of reduced to oxidized glutathione. We used cross-correlation analysis to evaluate the relationships between the trajectories of Eh, insulin, glucose, and respiratory exchange during COF. DDIT3 and XBP1s/u mRNA were measured as markers of endoplasmic reticulum stress (ER stress) in adipose tissue before and after COF. Here, we show that acute COF is characterized by net transfer of electrons from mitochondria to cytoplasm. Circulating glutathione is oxidized in a manner that significantly cross-correlates with increasing insulin levels and precedes the decrease in cytoplasmic Eh. This effect is more pronounced in overweight individuals (OW). Markers of ER stress in subcutaneous fat are detectable in OW within 4 h. We conclude that acute COF contributes to metabolic dysfunction through insulin-dependent pathways that promote electron transfer to the cytoplasm and decrease antioxidant capacity. Characterization of redox during overfeeding is important for understanding the pathophysiology of obesity and type 2 diabetes.NEW & NOTEWORTHY Current principles assume that conversion of thermic energy to metabolically useful energy follows fixed rules. These principles ignore the possibility of variable proton uncoupling in mitochondria. Our study shows that the net balance of electron distribution between mitochondria and cytoplasm is influenced by insulin in a manner that reduces proton leakage during overfeeding. Characterization of the effects of insulin on redox balance is important for understanding obesity and insulin resistance.


Assuntos
Carboidratos da Dieta/efeitos adversos , Hiperfagia , Insulina/farmacologia , Doenças Metabólicas/metabolismo , Tecido Adiposo/metabolismo , Adulto , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Técnica Clamp de Glucose , Glutationa/metabolismo , Humanos , Resistência à Insulina , Masculino , Doenças Metabólicas/fisiopatologia , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sobrepeso/metabolismo , Oxirredução , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Adulto Jovem
2.
Gen Comp Endocrinol ; 191: 239-46, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23867229

RESUMO

Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes.


Assuntos
Coturnix/metabolismo , Animais , Corticosterona/metabolismo , Coturnix/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA