Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Conserv Biol ; 38(2): e14159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37551769

RESUMO

Wildlife mortality due to collisions with vehicles (roadkill) is one of the predominant negative effects exerted by roads on many wildlife species. Reducing roadkill is therefore a major component of wildlife conservation. Roadkill is affected by various factors, including road attributes and traffic volume. It is theorized that the effect of traffic volume on roadkill probability should be unimodal. However, empirical evidence for this theory is lacking. Using a large-scale roadkill database of 18 wildlife species in Israel, encompassing 2846 km of roads over 10 years, we explored the effects of traffic volume and road attributes (e.g., road lighting, verge vegetation) on roadkill probability with a multivariate generalized linear mixed model. A unimodal effect of traffic volume was identified for the striped hyena (Hyaena hyaena), whereas 5 species demonstrated a novel quadratic U-shaped effect (e.g., golden jackal [Canis aureus]). Four species showed a negative linear effect (e.g., wild boar [Sus scrofa]). We also identified varying effects of road attributes on roadkill. For instance, road lighting and roadside trees decreased roadkill for several species, whereas bus stops and concrete guardrails led to increased roadkill. The theorized unimodal effect of traffic volume may only apply to large, agile species, and the U-shaped effect could be related to intraspecies variability in traffic avoidance behavior. In general, we found that both high-traffic and low-traffic roads can pose a high mortality risk for wildlife. It is therefore important to monitor roadkill on low-traffic roads and adapt road attributes to mitigate roadkill. Road design for effective roadkill mitigation includes reducing the use of concrete guardrails and median barriers where possible and avoiding dense bushes in verge landscaping. These measures are complemented by employing wildlife detection systems, driver warnings, and seasonal speed reduction measures on low-traffic roads identified as roadkill hotspots.


Riesgo de mortalidad de fauna presentado por las carreteras de mucho y poco tráfico Denneboom et al. 23­229 Resumen La mortalidad de fauna por colisiones con vehículos es uno de los efectos negativos predominantes que tienen las carreteras sobre muchas especies. Por lo tanto, la reducción de esta mortalidad es un componente principal de la conservación de la fauna. Esta mortalidad se ve afectada por varios factores, incluyendo las características de la carretera y el volumen de tráfico. Se piensa que el efecto del volumen de tráfico sobre la probabilidad de las colisiones debería ser unimodal; sin embargo, la evidencia empírica para esta teoría no es suficiente. Usamos una base de datos de colisiones de 18 especies de fauna en Israel que engloba 2,846 km de carreteras durante diez años para explorar con un modelo mixto lineal generalizado multivariado los efectos del volumen de tráfico y las características de la carretera (p. ej., iluminación, vegetación de borde) sobre la probabilidad de colisiones. Identificamos un efecto unimodal del volumen del tráfico para la hiena rayada (Hyaena hyaena), mientras que cinco especies demostraron un efecto cuadrático novedoso en forma de U, como el chacal dorado (Canis aureus). Cuatro especies mostraron un efecto negativo lineal, como el jabalí salvaje (Sus scrofa). También identificamos varios efectos de las características de la carretera sobre las colisiones. Por ejemplo, la iluminación y los árboles en los bordes disminuyeron las colisiones para varias especies, mientras que las paradas de camión y los quitamiedos de concreto resultaron en un incremento de las colisiones. La teoría del efecto unimodal del volumen de tráfico podría aplicar sólo para especies grandes y ágiles, mientras que el efecto en forma de U podría relacionarse con la variabilidad de comportamiento para evitar colisiones que hay entre las especies. En general, descubrimos que tanto las carreteras con poco y mucho tráfico pueden representar un riesgo de mortalidad para la fauna. Por lo tanto, es importante monitorear las colisiones en las carreteras con poco tráfico y adaptar las características de la carretera para mitigar las colisiones. El diseño de las carreteras para una mitigación efectiva incluye reducir el uso de quitamiedos de concreto y barreras centrales en donde sea posible y evitar los arbustos densos en el paisajismo de los bordes. Estas medidas están complementadas con el uso de sistemas de detección de fauna, señalamientos para los conductores y medidas estacionales de reducción de la velocidad en las carreteras de poco tráfico identificadas como puntos calientes de colisiones.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Probabilidade , Acidentes de Trânsito/prevenção & controle
2.
J Environ Manage ; 361: 121263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820795

RESUMO

Roads are one of the most widespread structures that drive habitat loss and fragmentation. But they also restrict animal movement and drive landscape-level impacts on biodiversity. The South Pacific of Costa Rica is known for its high levels of biodiversity, but little has been done to reduce road impacts upon wildlife communities. To understand these impacts and advise on possible mitigation action, we used three key data approaches: 1. Camera traps, to survey wildlife activity along two major road sections that dissect the region's protected areas and biological corridors. Seventy-eight camera traps were deployed in secondary forest patches at different distances (between 200 m and 1 km) from the roads for six months and covariates were collected to explain the patterns found. 2. Citizen science data extracted from iNaturalist to identify roadkill "hotspots" along the roads. And 3. Circuitscape analysis, to assess how landscape structure could influence animal movement. Camera traps recorded 30 terrestrial species. Ocelots and agoutis displayed a negative effect of distance from protected area, while the Apex predators displayed a positive effect toward higher forest cover and vegetation density. Circuitscape analysis showed high connectivity throughout most of the area. Only a few locations showed higher flow (bottle neck locations), which coincided with roadkill "hotspots" identified through citizen science direct observations (70 observations of 21 species). Amalgamating data from the different analyses allow us to identify four key wildlife crossing locations (one of less priority) along the Inter-American Highway. We strongly recommend the placement of under/overpasses in these locations, with the aim to ensure wildlife safe movement and connectivity of wildlife populations in the region. Culvert modifications in the area could also be considered to incorporate wildlife underpasses at a reduced cost.


Assuntos
Animais Selvagens , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Costa Rica , Conservação dos Recursos Naturais/métodos , Animais , Florestas
3.
Environ Manage ; 73(2): 365-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37294316

RESUMO

A critical step to design wildlife mitigating measures is the identification of roadkill hotspots. However, the effectiveness of mitigations based on roadkill hotspots depends on whether spatial aggregations are recurrent over time, spatially restricted, and most importantly, shared by species with diverse ecological and functional characteristics. We used a functional group approach to map roadkill hotspots for mammalian species along the BR-101/North RJ, a major road crossing important remnants of the Brazilian Atlantic Forest. We tested if functional groups present distinct hotspot patterns, and if they converge into the same road sectors, in that case, favoring optimal mitigating actions. Roadkill rates were monitored and recorded between October/2014 and September/2018 and species were classified into six functional groups based on their home range, body size, locomotion mode, diet, and forest-dependency. Hotspots along the roads were mapped for comparison of spatial patterns between functional groups. Results demonstrated that the roadkill index varied idiosyncratically for each functional group throughout the months and that no group presented seasonality. Seven hotspots were shared by two or more functional groups, highlighting the importance of these road stretches to regional mammal fauna. Two of the stretches are associated with aquatic areas extending from one side of the road to the other, and the remaining are connected to patches of native vegetation on both sides. This work brings a promising approach, yet hardly used in ecological studies on roads to analyze roadkill dynamics, assigning more importance to ecological instead of taxonomical characteristics, normally used to identify spatiotemporal patterns.


Assuntos
Animais Selvagens , Mamíferos , Animais , Brasil , Florestas
4.
Ecol Appl ; 33(3): e2789, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36482023

RESUMO

Adult mortality is often the most sensitive vital rate affecting at-risk wildlife populations. Therefore, road ecology studies often focus on adult mortality despite the possibility for roads to be hazardous to juvenile individuals during natal dispersal. Failure to quantify concurrent variation in mortality risk and population sensitivity across demographic states can mislead the efforts to understand and mitigate the effects of population threats. To compare relative population impacts from road mortality among demographic classes, we weighted mortality observations by applying reproductive value analysis to quantify expected stage-specific contributions to population growth. We demonstrate this approach for snapping turtles (Chelydra serpentina) observed on roads at two focal sites in Ontario, Canada, where we collected data for both live and dead individuals observed on roads. We estimated reproductive values using stage-classified matrix models to compare relative population-level impacts of adult and juvenile mortality. Reproductive value analysis is a tractable approach to assessing demographically variable effects for applications covering large spatial scales, nondiscrete populations, or where abundance data are lacking. For one site with long-term life-history data, we compared demographic frequency on roads to expected general population frequencies predicted by the matrix model. Our application of reproductive value is sex specific but, as juvenile snapping turtles lack external secondary sex characters, we estimated the sex ratio of road-crossing juveniles after dissecting and sexing carcasses collected on roads at five sites across central Ontario, Canada. Juveniles were more abundant on roads than expected, suggesting a substantial dispersal contribution, and the road-killed juvenile sex ratio approached 1:1. A higher proportion of juveniles were also found dead compared with adults, and cumulative juvenile mortality had similar population-level importance as adult mortality. This suggests that the impact of roads needs to be considered across all life stages, even in wildlife species with slow life histories, such as snapping turtles, that are particularly sensitive to adult mortality.


Assuntos
Tartarugas , Humanos , Animais , Masculino , Feminino , Répteis , Ontário , Animais Selvagens
5.
J Environ Manage ; 339: 117917, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062092

RESUMO

The rapidly growing global road networks put serious pressures on terrestrial ecosystems and increase the number and severity of human-wildlife conflicts, which in most cases manifest in animal-vehicle collisions (AVCs). AVCs pose serious problems both for biodiversity conservation and traffic safety: each year, millions of vertebrates are roadkilled globally and the related economic damage is also substantial. For a comprehensive understanding of factors influencing AVC it is essential to explore the human factor, that is, the habits and attitude of drivers; however, to date, comprehensive surveys are lacking on this topic. Here we addressed this knowledge gap and surveyed the habits of drivers and their experience and attitude towards AVCs by a comprehensive questionnaire covering a large geographical area and involving a large number of respondents (1942 completed questionnaires). We aimed to reveal how driving habits affect the chance of AVC, and explored the attitude of the drivers regarding AVC. We found that the number of lifetime AVC cases was higher for male drivers, for those who drove longer distances per year, had more driven years, used country roads or drove large vehicles. Our results showed that almost half of the drivers surveyed had experienced at least one AVC in their lifetime. Drivers' attitudes towards the importance of nature conservation or traffic safety in the aspect of AVC, and fear of collision showed a significant correlation with experienced AVC cases. Drivers' opinions indicated that the most trusted and desired AVC prevention measures were physical objects such as fences and wildlife crossings. Our research provides guidelines for developing targeted initiatives in the future to increase awareness about the significance of AVC and target those drivers who are most vulnerable to AVC.


Assuntos
Acidentes de Trânsito , Cervos , Animais , Masculino , Humanos , Acidentes de Trânsito/prevenção & controle , Ecossistema , Animais Selvagens , Atitude
6.
J Environ Manage ; 342: 118346, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315465

RESUMO

We test a forecasting strategy to identify potential hotspots of amphibian roadkill, combining the spatial distribution of amphibians, their relative risk of collision with vehicles and data on road density in Spain. We extracted a large dataset from studies reporting road casualties of 39 European amphibian species and then estimated the 'relative roadkill risk' of species as the frequency of occurrence of casualties for each amphibian and standardized by the range of distribution of the species in Europe. Using a map with the spatial distribution of Spanish amphibians at a spatial resolution of 10 × 10 Km squares, we estimated the 'cumulative relative risk of roadkill' for each amphibian assemblage as the sum of risk estimates previously calculated for each species. We also calculated the total length of roads in each square (road density). Finally, combining all layers of information, we elaborated a forecasting map highlighting the potential amphibian roadkill risk across Spain. Our findings are relevant to suggest areas that should be focused on at more detailed spatial scales. Additionally, we found that the frequency of roadkill was unrelated to the evolutionary distinctiveness score and conservation status of amphibian species, while was positively correlated with their distribution range.


Assuntos
Anfíbios , Animais , Europa (Continente) , Probabilidade , Espanha , Demografia
7.
Environ Monit Assess ; 195(12): 1410, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922036

RESUMO

One of the main things wildlife does for survival is movement. Wild animals need movement to meet their needs, such as reproduction, breeding, foraging, and dispersal. Although wildlife species use roads for various purposes, they also use them when moving from one habitat to another. In recent years, especially when it comes to habitat fragmentation brought about by urbanization, wild animals frequently use highways. Highways have a wide range of effects on factors such as biodiversity, wildlife, and ecology. Roads can cause habitat loss, habitat fragmentation, and habitat degradation; alter the composition of vegetation; act as barriers to the flow of genes and movement; increase human access to pristine areas; and even increase the risk of extinction for many threatened species. Species belonging to the family Cervidae also include the species most affected by road networks. Roe deer (Capreolus capreolus Linnaeus, 1758) is the smallest of the 3 Cervid species living in Turkey. Roe deer are often injured or die in road accidents, and they are one of the most important species affected by the adverse effects of roads in Turkey. For this reason, it was investigated whether the road tunnel construction affected the distribution of roe deer in the region. In the study, the general distribution of roe deer in the Ilgaz Mountain, and the factors affecting their possible distribution were determined by ecological niche modeling. Data were taken between before (2012-2015) and after the highway tunnel built (2020-2022) in Ilgaz Mountain, which connects the Western Black Sea and Central Anatolia and is located in the middle of Kastamonu and Çankiri provinces. As a result of the modeling, it was found that before the construction of the tunnel, the most influential factor in the distribution of the deer was road density. After the tunnel construction, roads ceased to be the main factor affecting the distribution of the species. This study showed that roe deer are disturbed by the density of vehicles on the road passing through the middle of their habitat. With the decrease in the number of vehicles, they are more willing to cross the road and tend to use the areas close to the road as they are less disturbed.


Assuntos
Cervos , Humanos , Animais , Monitoramento Ambiental , Ecossistema , Animais Selvagens , Ecologia
8.
Glob Chang Biol ; 28(24): 7217-7233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166319

RESUMO

While linear infrastructures, such as roads and power lines, are vital to human development, they may also have negative impacts on wildlife populations up to several kilometres into the surrounding environment (infrastructure-effect zones, IEZs). However, species-specific IEZs are not available for the vast majority of species, hampering global assessments of infrastructure impacts on wildlife. Here, we synthesized 253 studies worldwide to quantify the magnitude and spatial extent of infrastructure impacts on the abundance of 792 vertebrate species. We also identified the extent to which species traits, infrastructure type and habitat modulate IEZs for vertebrate species. Our results reveal contrasting responses across taxa based on the local context and species traits. Carnivorous mammals were generally more abundant in the proximity of infrastructure. In turn, medium- to large-sized non-carnivorous mammals (>1 kg) were less abundant near infrastructure across habitats, while their smaller counterparts were more abundant close to infrastructure in open habitats. Bird abundance was reduced near infrastructure with larger IEZs for non-carnivorous than for carnivorous species. Furthermore, birds experienced larger IEZs in closed (carnivores: ≈130 m, non-carnivores: >1 km) compared to open habitats (carnivores: ≈70 m, non-carnivores: ≈470 m). Reptiles were more abundant near infrastructure in closed habitats but not in open habitats where abundances were reduced within an IEZ of ≈90 m. Finally, IEZs were relatively small in amphibians (<30 m). These results indicate that infrastructure impact assessments should differentiate IEZs across species and local contexts in order to capture the variety of responses to infrastructure. Our trait-based synthetic approach can be applied in large-scale assessments of the impacts of current and future infrastructure developments across multiple species, including those for which infrastructure responses are not known from empirical data.


Assuntos
Anfíbios , Répteis , Animais , Humanos , Vertebrados , Mamíferos/fisiologia , Aves/fisiologia , Ecossistema , Animais Selvagens
9.
Oecologia ; 199(1): 217-228, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35522293

RESUMO

Traffic noise is one of the leading causes of reductions in animal abundances near roads. Acoustic masking of conspecific signals and adventitious cues is one mechanism that likely causes animals to abandon loud areas. However, masking effects can be difficult to document in situ and the effects of infrequent noise events may be impractical to study. Here, we present the Soundscapes model, a stochastic individual-based model that dynamically models the listening areas of animals searching for acoustic resources ("searchers"). The model also studies the masking effects of noise for human detections of the searchers. The model is set in a landscape adjacent to a road. Noise produced by vehicles traveling on that road is represented by calibrated spectra that vary with speed. Noise propagation is implemented using ISO-9613 procedures. We present demonstration simulations that quantify declines in searcher efficiency and human detection of searchers at relatively low traffic volumes, fewer than 50 vehicles per hour. Traffic noise is pervasive, and the Soundscapes model offers an extensible tool to study the effects of noise on bioacoustics monitoring, point-count surveys, the restorative value of natural soundscapes, and auditory performance in an ecological context.


Assuntos
Animais Selvagens , Ruído , Acústica , Animais , Recreação
10.
J Environ Manage ; 313: 114992, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427861

RESUMO

Wildlife-train collisions can have deleterious effects on local wildlife populations and come with high socio-economic costs, such as damages, delays, and psychological distress. In this study, we explored two major components of wildlife-train collisions: the response of wildlife to oncoming trains and the detection of wildlife by drivers. Using dashboard cameras, we explored the flight response of roe deer (Capreolus capreolus) and moose (Alces alces) to oncoming trains and explored which factors, such as lighting and physical obstructions, affect their detection by drivers. In a majority of cases, roe deer and moose fled from an oncoming train, at an average flight initiation distance (FID) of 78 m and 79 m respectively. Warning horns had unexpected influences on flight behaviour. While roe deer initiated flight, on average, 44 m further away from the train when warned, they usually fled towards the tracks, in the direction of danger. FID of moose, however, was unaffected by the use of a warning horn. As train speed increased, moose had a lower FID, but roe deer FID did not change. Finally, detection of wildlife was obstructed by the presence of vegetation and uneven terrain in the rail-side verge, which could increase the risk of collisions. Our results indicate the need for early detection and warning of wildlife to reduce the risk of collisions. We propose that detection systems should include thermal cameras to allow detection behind vegetation and in the dark, and warning systems should use cues early to warn of oncoming trains and allow wildlife to escape the railway corridor safely.


Assuntos
Cervos , Animais , Animais Selvagens
11.
J Anim Ecol ; 90(10): 2268-2276, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34013520

RESUMO

Global road networks facilitate habitat modification and are integral to human expansion. Many animals, particularly scavengers, use roads as they provide a reliable source of food, such as carrion left after vehicle collisions. Tasmania is often cited as the 'roadkill capital of Australia', with the isolated offshore islands in the Bass Strait experiencing similar, if not higher, levels of roadkill. However, native mammalian predators on the islands are extirpated, meaning the remaining scavengers are likely to experience lower interference competition. In this study, we used a naturally occurring experiment to examine how the loss of mammalian carnivores within a community impacts roadside foraging behaviour by avian scavengers. We monitored the locations of roadkill and forest ravens Corvus tasmanicus, an abundant scavenger species, on eight road transects across the Tasmanian mainland (high scavenging competition) and the Bass Strait islands (low scavenging competition). We represented raven observations as one-dimensional point patterns, using hierarchical Bayesian models to investigate the dependence of raven spatial intensity on habitat, season, distance to roadkill and route location. We found that roadkill carcasses were a strong predictor of raven presence along road networks. The effect of roadkill was amplified on roads on the Bass Strait islands, where roadside carrion was a predictor of raven presence across the entire year. In contrast, ravens were more often associated with roadkill on Tasmanian mainland roads in the autumn, when other resources were low. This suggests that in the absence of competing mammalian scavengers, ravens choose to feed on roadside carrion throughout the year, even in seasons when other resources are available. This lack of competition could be disproportionately benefiting forest ravens, leading to augmented raven populations and changes to the vertebrate community structure. Our study provides evidence that scavengers modify their behaviour in response to reduced scavenger species diversity, potentially triggering trophic shifts and highlighting the importance of conserving or reintroducing carnivores within ecosystems.


Assuntos
Carnívoros , Ecossistema , Animais , Teorema de Bayes , Cadeia Alimentar , Ilhas , Estações do Ano
12.
J Environ Manage ; 295: 113148, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34186315

RESUMO

Vehicles collide with hundreds of thousands of deer on European roads each year. This leads to animal deaths and suffering, economic damage and risks for human safety, making the reduction of road mortality a major field in conservation biology. In order to successfully reduce roadkill, we need improved knowledge regarding spatio-temporal patterns of deer-vehicle collisions (DVCs) on a landscape scale. Here, we analyzed >85,000 DVCs collected over 17 years in Denmark to investigate changes in the number of DVCs over time and to find spatio-temporal patterns of DVC occurrence. We used a use-availability design - originally developed for habitat selection analyses - to compare DVCs involving roe deer (Capreolus capreolus), red deer (Cervus elaphus) and fallow deer (Dama dama) with random road locations on a landscape scale. This approach enabled us to combine temporal (seasonal and diel variation), spatial (land cover, road density and type) and other relevant variables (deer population density, traffic, and deer activity) within the same analysis. We found that factors related to infrastructure and land cover were most important in explaining patterns of DVCs, but seasonal and diel changes, deer activity, and population density were also important in predicting the occurrence of DVCs. Importantly, patterns of DVCs were largely similar between the three deer species, with more DVCs occurring at intermediate traffic density, increasing forest cover, during dusk and dawn, and with increasing deer activity and population density. The strong and consistent patterns found here will allow the development of flexible mitigation measures. We propose that our findings could be used to develop a spatio-temporally flexible warning system for smartphones and navigation systems that is based on existing map providers, making it a widely available and cheap mitigation measure.


Assuntos
Acidentes de Trânsito , Cervos , Acidentes de Trânsito/prevenção & controle , Animais , Ecossistema
13.
Proc Biol Sci ; 287(1926): 20200062, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32370671

RESUMO

The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8-1.6 g l-1 Cl-) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics.


Assuntos
Anfíbios/virologia , Infecções por Vírus de DNA/veterinária , Ranavirus , Anfíbios/fisiologia , Animais , Corticosterona/metabolismo , Infecções por Vírus de DNA/epidemiologia , Epidemias , Estresse Salino/fisiologia
14.
Proc Biol Sci ; 287(1923): 20200176, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32183626

RESUMO

Noise pollution is pervasive across every ecosystem on Earth. Although decades of research have documented a variety of negative impacts of noise to organisms, key gaps remain, such as how noise affects different taxa within a biological community and how effects of noise propagate across space. We experimentally applied traffic noise pollution to multiple roadless areas and quantified the impacts of noise on birds, grasshoppers and odonates. We show that acoustically oriented birds have reduced species richness and abundance and different community compositions in experimentally noise-exposed areas relative to comparable quiet locations. We also found both acoustically oriented grasshoppers and odonates without acoustic receptors to have reduced species richness and/or abundance in relatively quiet areas that abut noise-exposed areas. These results suggest that noise pollution not only affects acoustically oriented animals, but that noise may reverberate through biological communities through indirect effects to those with no clear links to the acoustic realm, even in adjacent quiet environments.


Assuntos
Ecossistema , Ruído , Animais , Biota , Aves , Meio Ambiente , Gafanhotos , Reprodução
15.
Mol Ecol ; 29(4): 673-685, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981245

RESUMO

The resolution offered by genomic data sets coupled with recently developed spatially informed analyses are allowing researchers to quantify population structure at increasingly fine temporal and spatial scales. However, both empirical research and conservation measures have been limited by questions regarding the impacts of data set size, data quality thresholds and the timescale at which barriers to gene flow become detectable. Here, we used restriction site associated DNA sequencing to generate a 2,140 single nucleotide polymorphism (SNP) data set for the copperhead snake (Agkistrodon contortrix) and address the population genomic impacts of recent and widespread landscape modification across an ~1,000-km2 region of eastern Kentucky, USA. Nonspatial population-based assignment and clustering methods supported little to no population structure. However, using individual-based spatial autocorrelation approaches we found evidence for genetic structuring which closely follows the path of a historically important highway which experienced high traffic volumes from c. 1920 to 1970 before losing most traffic to a newly constructed alternative route. We found no similar spatial genomic signatures associated with more recently constructed highways or surface mining activity, although a time lag effect may be responsible for the lack of any emergent spatial genetic patterns. Subsampling of our SNP data set suggested that similar results could be obtained with as few as 250 SNPs, and a range of thresholds for missing data exhibited limited impacts on the spatial patterns we detected. While we were not able to estimate relative effects of land uses or precise time lags, our findings highlight the importance of temporal factors in landscape genetics approaches, and suggest the potential advantages of genomic data sets and fine-scale, spatially informed approaches for quantifying subtle genetic patterns in temporally complex landscapes.


Assuntos
Agkistrodon/genética , Ecossistema , Variação Genética/genética , Genômica , Animais , Região dos Apalaches , Fluxo Gênico/genética , Genética Populacional , Kentucky , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Sequência de DNA
16.
J Anim Ecol ; 89(2): 623-634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648375

RESUMO

Space-use behaviour reflects trade-offs in meeting ecological needs and can have consequences for individual survival and population demographics. The mechanisms underlying space use can be understood by simultaneously evaluating habitat selection and movement patterns, and fine-resolution locational data are increasing our ability to do so. We use high-resolution location data and an integrated step-selection analysis to evaluate caribou, moose, bear, and wolf habitat selection and movement behaviour in response to anthropogenic habitat modification, though caribou data were limited. Space-use response to anthropogenic linear features (LFs) by predators and prey is hypothesized to increase predator hunting efficiency and is thus believed to be a leading factor in woodland caribou declines in western Canada. We found that all species moved faster while on LFs. Wolves and bears were also attracted towards LFs, whereas prey species avoided them. Predators and prey responded less strongly and consistently to natural features such as streams, rivers and lakeshores. These findings are consistent with the hypothesis that LFs facilitate predator movement and increase hunting efficiency, while prey perceive such features as risky. Understanding the behavioural mechanisms underlying space-use patterns is important in understanding how future land-use may impact predator-prey interactions. Explicitly linking behaviour to fitness and demography will be important to fully understand the implications of management strategies.


Assuntos
Rena , Lobos , Animais , Canadá , Ecossistema , Comportamento Predatório
17.
Conserv Biol ; 34(5): 1210-1220, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32227646

RESUMO

Mortality of animals on roads is a critical threat to many wildlife populations and is poised to increase strongly because of ongoing and planned road construction. If these new roads cannot be avoided, effective mitigation measures will be necessary to stop biodiversity decline. Fencing along roads effectively reduces roadkill and is often used in combination with wildlife passages. Because fencing the entire road is not always possible due to financial constraints, high-frequency roadkill areas are often identified to inform the placement of fencing. We devised an adaptive fence-implementation plan to prioritize road sections for fencing. In this framework, areas along roads of high, moderate, and low levels of animal mortality (respectively, roadkill hotspots, warmspots, and coldspots) are identified at multiple scales (i.e., in circles of different diameters [200-2000 m] in which mortality frequency is measured). Fence deployment is based on the relationship between the amount of fencing being added to the road, starting with the strongest roadkill hotspots, and potential reduction in road mortality (displayed in mortality-reduction graphs). We applied our approach to empirical and simulated spatial patterns of wildlife-vehicle collisions. The scale used for analysis affected the number and spatial extent of roadkill hot-, warm-, and coldspots. At fine scales (e.g., 200 m), more hotspots were identified than at coarse scales (e.g., 2000 m), but combined the fine-scale hotspots covered less road and less fencing was needed to reduce road mortality. However, many short fences may be less effective in practice due to a fence-end effect (i.e., animals moving around the fence more easily), resulting in a trade-off between few long and many short fences, which we call the FLOMS (few-long-or-many-short) fences trade-off. Thresholds in the mortality-reduction graphs occurred for some roadkill patterns, but not for others. Thresholds may be useful to consider when determining road-mitigation targets. The existence of thresholds at multiple scales and the FLOMS trade-off have important implications for biodiversity conservation.


Un Plan Adaptativo para la Priorización de Secciones de Carretera para Cercar y Reducir la Mortalidad Animal Resumen La mortalidad de los animales en las carreteras es una amenaza muy importante para las poblaciones silvestres y se pronostica que aumentarán enérgicamente debido a la construcción continua y planeada de carreteras. Si estas nuevas carreteras no pueden evitarse, se necesitarán medidas efectivas de mitigación para detener la declinación de la biodiversidad. El cercado a lo largo de las carreteras reduce efectivamente los atropellamientos y se usa frecuentemente junto con los pasos de fauna. Ya que cercar por completo la carretera no siempre es posible debido a las restricciones financieras, es común identificar las áreas con una frecuencia alta de atropellamientos para que la colocación de cercas esté informada al respecto. Diseñamos un plan adaptativo de implementación de cercas para priorizar las secciones de carretera que requieren ser cercadas. En este marco de trabajo, identificamos las áreas a lo largo de las carreteras con un nivel alto, moderado y bajo de mortalidad animal (respectivamente, puntos calientes, cálidos y fríos de atropellamiento) a diferentes escalas (es decir, en círculos de diferentes diámetros [200-2000 m] dentro de los cuales se mide la frecuencia de la mortalidad). El despliegue de cercas está basado en la relación entre la cantidad de cercas que se van añadiendo a la carretera, iniciando en los puntos calientes de atropellamiento, y la reducción potencial de la mortalidad en la carretera (presentada en gráficas de reducción de la mortalidad). Aplicamos nuestra estrategia a los patrones espaciales empíricos y simulados de las colisiones entre vehículos y animales. La escala utilizada para el análisis afectó al número y a la extensión espacial de los puntos calientes, cálidos y fríos de los atropellamientos. A escalas finas (p. ej.: 200 m), se identificaron más puntos calientes que a escalas más amplias (p. ej.: 2000 m), pero combinadas las escalas finas, los puntos calientes cubrieron una superficie menor de la carretera y se necesitaron menos cercas para reducir la mortalidad. Sin embargo, muchas cercas cortas pueden ser menos efectivas en la práctica debido al efecto de fin de valla (es decir, que los animales se muevan alrededor de la cerca con mayor facilidad), lo que resulta en una compensación entre pocas cercas largas y muchas cercas cortas, que denominamos compensación de cercas FLOMS (pocas-largas-o-muchas-cortas). Los umbrales en las gráficas de reducción de la mortalidad se presentaron para algunos patrones de atropellamiento, pero no para otros. Los umbrales pueden ser útiles para considerar cuando se determinan los objetivos de mitigación para las carreteras. La existencia de los umbrales a escalas múltiples y la compensación de FLOMS tienen implicaciones importantes para la conservación de la biodiversidad.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Biodiversidade
18.
Gen Comp Endocrinol ; 294: 113468, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201233

RESUMO

Ecological factors, such as habitat quality, influence the survival and reproductive success of free-living organisms. Urbanization, including roads, alters native habitat and likely influences physiology, behavior, and ultimately Darwinian fitness. Some effects of roads are clearly negative, such as increased habitat fragmentation and mortality from vehicle collision. However, roads can also have positive effects, such as decreasing predator density and increased vegetation cover, particularly in xeric habitats due to increased water run-off. Glucocorticoids are metabolic hormones that reflect baseline metabolic needs, increase in response to acute challenges, and may mediate endogenous resource trade-offs between survival and reproduction. Here we examined circulating concentrations of corticosterone (baseline and stress-induced) in desert iguanas (Dipsosaurus dorsalis) in relation to the distance from a major anthropogenic disturbance, a high-traffic road in Palm Springs, CA. Additionally, we analyzed body condition and population density as additional predictors of glucocorticoid physiology. Surprisingly, we found lower baseline CORT levels closer to the road, but no effect of distance from road on stress-induced CORT or stress responsiveness (difference between baseline and stress-induced concentrations). Both population density and body condition were negative predictors of baseline CORT, stress-induced CORT, and stress responsiveness. Given the known effect of roads to increase run-off and vegetation density, increased water availability may improve available forage and shade, which may then increase the carrying capacity of the habitat and minimize metabolic challenges for this herbivorous lizard. However, it is important to recognize that surfaces covered by asphalt are not usable habitat for iguanas, likely resulting in a net habitat loss.


Assuntos
Glucocorticoides/metabolismo , Atividades Humanas , Iguanas/metabolismo , Animais , Corticosterona/sangue , Feminino , Iguanas/sangue , Masculino , Densidade Demográfica , Estresse Fisiológico
19.
J Environ Manage ; 262: 110313, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250796

RESUMO

In an attempt to improve cost-effectiveness, it has become increasingly popular to adapt wildlife crossing structures to enable people to also use them for safe passage across roads. However, the required needs of humans and wildlife may conflict, resulting in a structure that does not actually provide the perceived improvement in cost-effectiveness, but instead a reduction in conservation benefits. For example, lighting within crossing structures for human safety at night may reduce use of the structure by nocturnal wildlife, thus contributing to barrier and mortality effects of roads rather than mitigating them. In this study, we experimentally evaluated the impact of artificial light at night on the rate of use of wildlife crossing structures, specifically underpasses, by ten insectivorous bat species groups in south-eastern Australia. We monitored bat activity before, during and after artificially lighting the underpasses. We found that bats tended to avoided lit underpasses, and only one species consistently showed attraction to the light. Artificial light at night in underpasses hypothetically increases the vulnerability of bats to road-mortality or to the barrier effect of roads. The most likely outcomes of lighting underpasses were 1. an increase in crossing rate above the freeway and a decrease under the underpasses, or 2. a reduction in crossing rate both above freeways and under the underpasses, when structures were lit. Our results corroborate those of studies on terrestrial mammals, and thus we recommend that underpasses intended to facilitate the movement of wildlife across roads should not be lit.


Assuntos
Quirópteros , Animais , Animais Selvagens , Humanos , Iluminação , Mamíferos , Austrália do Sul
20.
J Environ Manage ; 273: 111095, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734891

RESUMO

Wildlife crossing structures can provide safe passage for wildlife across transportation corridors, and can help mitigate the effects of highways and exclusion fencing on wildlife. Due to their costs, wildlife crossing structures are usually installed sparsely and at strategic locations along transportation networks. Alternatively, non-wildlife underpasses (i.e. conventional underpasses for human and domestic animal use) are usually abundant along major infrastructure corridors and could potentially provide safe crossing opportunities for wildlife. To investigate this, we monitored the use of 40 non-wildlife underpasses by roe deer (Capreolus capreolus), and moose (Alces alces) in south-central Sweden. We found that roe deer and moose use non-wildlife underpasses, and prefer underpasses that are at least 11.5 m wide and 5 m tall. Furthermore, roe deer used structures that had little human co-use and were in locations where the forest cover differed on both sides of the highway. In most cases, roe deer and moose were detected within 50 m of the underpass more than they were detected crossing under them. This suggests that animals often approach underpasses without crossing under them, however modifications to underpass design may improve non-wildlife underpass use. We recommend non-wildlife underpasses at gravel and minor roads, particularly those with little human co-use and with variable forest cover on both sides of the highway, be built wider than 11.5 m and taller than 5 m.


Assuntos
Cervos , Animais , Animais Selvagens , Florestas , Humanos , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA