Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143238

RESUMO

Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.

2.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980908

RESUMO

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Assuntos
Cisteína , Peptídeos e Proteínas de Sinalização Intracelular , Lipoilação , Proteínas de Ligação a Fosfato , Piroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cisteína/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Gasderminas
3.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
4.
J Proteome Res ; 23(2): 673-683, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157263

RESUMO

Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Animais , Camundongos , Humanos , Acilação , Lipoilação , Hidroxilamina , Hidroxilaminas
5.
J Proteome Res ; 23(8): 3716-3725, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39008777

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.


Assuntos
Cisteína , Espectrometria de Massas em Tandem , Acilação , Animais , Cisteína/química , Cisteína/metabolismo , Camundongos , Espectrometria de Massas em Tandem/métodos , Hidroxilamina/química , Cromatografia Líquida/métodos , Lipoilação , Processamento de Proteína Pós-Traducional , Compostos de Sulfidrila/química , Proteínas/química , Proteínas/metabolismo , Encéfalo/metabolismo
6.
J Biol Chem ; 299(9): 105088, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495107

RESUMO

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Assuntos
Cisteína , Ácido Palmítico , Proteoma , Ácidos Esteáricos , Acilação , Cisteína/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácidos Esteáricos/metabolismo
7.
Immunology ; 173(1): 53-75, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866391

RESUMO

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.


Assuntos
Processamento de Proteína Pós-Traducional , Humanos , Acilação , Animais , Imunidade , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Lisina/metabolismo
8.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350967

RESUMO

The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.


Assuntos
Lipoilação , Lisossomos , Complexo de Golgi/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Transporte Proteico
9.
Eur J Immunol ; 53(10): e2350476, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369620

RESUMO

S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.


Assuntos
Lipoilação , Transdução de Sinais , Lipoilação/fisiologia , Imunidade Inata , Processamento de Proteína Pós-Traducional
10.
Biochem Soc Trans ; 52(1): 407-421, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38348884

RESUMO

Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.


Assuntos
Proteínas de Transporte , Neoplasias , Humanos , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Acilação , Aciltransferases/metabolismo
11.
Pharmacol Res ; : 107418, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306022

RESUMO

The ZDHHC13/ZDHHC17 subfamily belongs to the zinc finger DHHC-domain containing (ZDHHC) family, including ZDHHC13 and ZDHHC17. Recent studies have shown that the ZDHHC13/ZDHHC17 subfamily is involved in various pathological and physiological processes, including S-palmitoylation, Mg2+ transport, and CALCOCO1-mediated Golgiphagy. Moreover, the ZDHHC13/ZDHHC17 subfamily plays a crucial role in the occurrence and development of many diseases, including Huntington disease (HD), osteoporosis, atopic dermatitis, diabetes, and cancer. In the present review, we describe the distribution, structure, and post-translational modifications (PTMs) of the ZDHHC13/ZDHHC17 subfamily. Moreover, we effectively summarize the biological functions and associated diseases of this subfamily. Given the pleiotropy of the ZDHHC13/ZDHHC17 subfamily, it is imperative to conduct further research on its members to comprehend the pertinent pathophysiological mechanisms and to devise tactics for managing and controlling various diseases.

12.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467718

RESUMO

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Assuntos
Aciltransferases , Antígeno B7-1 , Lipoilação , Ativação Linfocitária , Humanos , Antígeno B7-1/metabolismo , Aciltransferases/metabolismo , Células HEK293 , Linfócitos T/metabolismo , Linfócitos T/imunologia , Processamento de Proteína Pós-Traducional , Ubiquitinação
13.
J Proteome Res ; 22(7): 2421-2435, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294931

RESUMO

S-Palmitoylation is the covalent attachment of C14:0-C22:0 fatty acids (mainly C16:0 palmitate) to cysteines via thioester bonds. This lipid modification is highly abundant in neurons, where it plays a role in neuronal development and is implicated in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The knowledge of S-palmitoylation in neurodevelopment is limited due to technological challenges in analyzing this highly hydrophobic protein modification. Here, we used two orthogonal methods, acyl-biotin exchange (ABE) and lipid metabolic labeling (LML), to identify S-palmitoylated proteins and sites during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. We identified 2002 putative S-palmitoylated proteins in total, of which 650 were found with both methods. Significant changes in the abundance of S-palmitoylated proteins were detected, in particular for several processes and protein classes that are known to be important for neuronal differentiation, which include proto-oncogene tyrosine-protein kinase receptor (RET) signal transduction, SNARE protein-mediated exocytosis, and neural cell adhesion molecules. Overall, S-palmitoylation profiling by employing ABE and LML in parallel during RA-induced differentiation of SH-SY5Y cells revealed a subset of high confidence bona fide S-palmitoylated proteins and suggested an important role for S-palmitoylation in neuronal differentiation.


Assuntos
Neuroblastoma , Tretinoína , Humanos , Tretinoína/farmacologia , Lipoilação , Diferenciação Celular , Proteínas , Lipídeos , Linhagem Celular Tumoral
14.
Biochem Biophys Res Commun ; 662: 58-65, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099811

RESUMO

The neurotransmitter serotonin (5-HT) is transported back into serotonergic neurons by the serotonin transporter (SERT). SERT is a main target of antidepressants, and much effort has therefore focused on finding relationships between SERT and depression. However, it is not fully understood how SERT is regulated at the cellular level. Here, we report post-translational regulation of SERT by S-palmitoylation, in which palmitate is covalently attached to cysteine residues of proteins. Using AD293 cells (a human embryonic kidney 293-derived cell line with improved cell adherence) transiently transfected with FLAG-tagged human SERT, we observed S-palmitoylation of immature SERT containing high-mannose type N-glycans or no N-glycan, which is presumed to be localized in the early secretory pathway, such as the endoplasmic reticulum. Mutational analysis by alanine substitutions shows that S-palmitoylation of immature SERT occurs at least at Cys-147 and Cys-155, juxtamembrane cysteine residues within the first intracellular loop. Furthermore, mutation of Cys-147 reduced cellular uptake of a fluorescent SERT substrate that mimics 5-HT without decreasing SERT on the cell surface. On the other hand, combined mutation of Cys-147 and Cys-155 inhibited SERT surface expression and reduced the uptake of the 5-HT mimic. Thus, S-palmitoylation of Cys-147 and Cys-155 is important for both the cell surface expression and 5-HT uptake capacity of SERT. Given the importance of S-palmitoylation in brain homeostasis, further investigation of SERT S-palmitoylation could provide new insights into the treatment of depression.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Lipoilação , Cisteína/metabolismo , Membrana Celular/metabolismo
15.
Chembiochem ; 24(20): e202300348, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37380612

RESUMO

The S-palmitoylation on Cys residue and O-acetylation on Ser/Thr residues are two types of base-labile post-translational modifications (PTMs) in cells. The lability of these PTMs to bases and nucleophiles makes the peptides/proteins bearing S-palmitoyl or O-acetyl groups challenging synthetic targets, which cannot be prepared via the standard Fmoc-SPPS and native chemical ligation. In this review, we summarized the efforts towards their preparation in the past 40 years, with the focus on the evolution of synthetic methods.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Peptídeos/química , Processamento de Proteína Pós-Traducional
16.
Brief Bioinform ; 22(2): 1836-1847, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32248222

RESUMO

As an important reversible lipid modification, S-palmitoylation mainly occurs at specific cysteine residues in proteins, participates in regulating various biological processes and is associated with human diseases. Besides experimental assays, computational prediction of S-palmitoylation sites can efficiently generate helpful candidates for further experimental consideration. Here, we reviewed the current progress in the development of S-palmitoylation site predictors, as well as training data sets, informative features and algorithms used in these tools. Then, we compiled a benchmark data set containing 3098 known S-palmitoylation sites identified from small- or large-scale experiments, and developed a new method named data quality discrimination (DQD) to distinguish data quality weights (DQWs) between the two types of the sites. Besides DQD and our previous methods, we encoded sequence similarity values into images, constructed a deep learning framework of convolutional neural networks (CNNs) and developed a novel algorithm of graphic presentation system (GPS) 6.0. We further integrated nine additional types of sequence-based and structural features, implemented parallel CNNs (pCNNs) and designed a new predictor called GPS-Palm. Compared with other existing tools, GPS-Palm showed a >31.3% improvement of the area under the curve (AUC) value (0.855 versus 0.651) for general prediction of S-palmitoylation sites. We also produced two species-specific predictors, with corresponding AUC values of 0.900 and 0.897 for predicting human- and mouse-specific sites, respectively. GPS-Palm is free for academic research at http://gpspalm.biocuckoo.cn/.


Assuntos
Gráficos por Computador , Aprendizado Profundo , Lipoilação , Proteínas/química , Algoritmos , Animais , Biologia Computacional/métodos , Humanos , Camundongos , Software
17.
J Biol Chem ; 296: 100106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219126

RESUMO

Members of the metallo-ß-lactamase (MBL) superfamily of enzymes harbor a highly conserved αßßα MBL-fold domain and were first described as inactivators of common ß-lactam antibiotics. In humans, these enzymes have been shown to exhibit diverse functions, including hydrolase activity toward amides, esters, and thioesters. An uncharacterized member of the human MBL family, MBLAC2, was detected in multiple palmitoylproteomes, identified as a zDHHC20 S-acyltransferase interactor, and annotated as a potential thioesterase. In this study, we confirmed that MBLAC2 is palmitoylated and identified the likely S-palmitoylation site as Cys254. S-palmitoylation of MBLAC2 is increased in cells when expressed with zDHHC20, and MBLAC2 is a substrate for purified zDHHC20 in vitro. To determine its biochemical function, we tested the ability of MBLAC2 to hydrolyze a variety of small molecules and acylprotein substrates. MBLAC2 has acyl-CoA thioesterase activity with kinetic parameters and acyl-CoA selectivity comparable with acyl-CoA thioesterase 1 (ACOT1). Two predicted zinc-binding residues, Asp87 and His88, are required for MBLAC2 hydrolase activity. Consistent with a role in fatty acid metabolism in cells, MBLAC2 was cross-linked to a photoactivatable fatty acid in a manner that was independent of its S-fatty acylation at Cys254. Our study adds to previous investigations demonstrating the versatility of the MBL-fold domain in supporting a variety of enzymatic reactions.


Assuntos
Tioléster Hidrolases/metabolismo , beta-Lactamases/metabolismo , Ácido Aspártico/metabolismo , Linhagem Celular Tumoral , Histidina/metabolismo , Humanos , Lipoilação/fisiologia , Tioléster Hidrolases/química , beta-Lactamases/química
18.
J Biol Chem ; 297(5): 101272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34606827

RESUMO

Mammalian cells acquire fatty acids (FAs) from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers of the breast, prostate, and liver, among others, and is required during the replication of many viruses, such as dengue virus, hepatitis C, HIV-1, hepatitis B, and severe acute respiratory syndrome coronavirus 2, among others. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo FA synthesis contributes to host or viral protein acylation has been traditionally difficult to study. Here, we describe a cell-permeable and click chemistry-compatible alkynyl acetate analog (alkynyl acetic acid or 5-hexynoic acid [Alk-4]) that functions as a reporter of FASN-dependent protein acylation. In an FASN-dependent manner, Alk-4 selectively labels the cellular protein interferon-induced transmembrane protein 3 at its known palmitoylation sites, a process that is essential for the antiviral activity of the protein, and the HIV-1 matrix protein at its known myristoylation site, a process that is required for membrane targeting and particle assembly. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Acilação , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , SARS-CoV-2/metabolismo
19.
J Inherit Metab Dis ; 45(3): 635-656, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150145

RESUMO

Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.


Assuntos
Cálcio/metabolismo , Lipofuscina , Lipofuscinoses Ceroides Neuronais , Tioléster Hidrolases/metabolismo , Aciltransferases , Animais , Modelos Animais de Doenças , Homeostase , Humanos , Lisossomos/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Tioléster Hidrolases/genética
20.
Bioessays ; 42(6): e1900145, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32342554

RESUMO

The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.


Assuntos
Malária Falciparum , Plasmodium falciparum , Química Click , Eritrócitos , Humanos , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA