Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810439

RESUMO

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Assuntos
Infecções por Coronavirus , Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Citometria de Fluxo , Humanos , Complexo Antígeno L1 Leucocitário , Monócitos , Células Mieloides , Estudos Prospectivos , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 120(43): e2221859120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844250

RESUMO

Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorß). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.


Assuntos
Neoplasias Pulmonares , Vacinas Virais , Humanos , Camundongos , Animais , Calgranulina B/metabolismo , Neoplasias Pulmonares/prevenção & controle , Calgranulina A/metabolismo , Pulmão/patologia , Citocinas/metabolismo
3.
EMBO J ; 40(16): e106540, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34121210

RESUMO

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Assuntos
Alarminas/genética , Calgranulina B/genética , HIV-1/fisiologia , Células de Langerhans/virologia , Vírus da Leucemia Murina de Moloney/fisiologia , Infecções por Retroviridae/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Cricetulus , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Células de Langerhans/imunologia , Leucemia Experimental/prevenção & controle , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Transcrição Reversa , Fator de Crescimento Transformador beta/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Replicação Viral
4.
Mol Cell Proteomics ; 22(6): 100547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059366

RESUMO

Basal cell carcinomas (BCCs) and cutaneous squamous cell carcinomas (SCCs) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KCs). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the tumor interstitial fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing seven BCCs, 16 SCCs, and four normal skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF proteins that could explain the different metastatic behavior in both KCs. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin-1. Previous studies found their upregulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KCs provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/metabolismo , Líquido Extracelular/metabolismo , NF-kappa B/metabolismo , Proteômica , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
5.
Proteomics ; 24(3-4): e2300202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37541286

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease with motor and non-motor symptoms. Diagnosis is complicated by lack of reliable biomarkers. To individuate peptides and/or proteins with diagnostic potential for early diagnosis, severity and discrimination from similar pathologies, the salivary proteome in 36 PD patients was investigated in comparison with 36 healthy controls (HC) and 35 Alzheimer's disease (AD) patients. A top-down platform based on HPLC-ESI-IT-MS allowed characterizing and quantifying intact peptides, small proteins and their PTMs (overall 51). The three groups showed significantly different protein profiles, PD showed the highest levels of cystatin SA and antileukoproteinase and the lowest of cystatin SN and some statherin proteoforms. HC exhibited the lowest abundance of thymosin ß4, short S100A9, cystatin A, and dimeric cystatin B. AD patients showed the highest abundance of α-defensins and short oxidized S100A9. Moreover, different proteoforms of the same protein, as S-cysteinylated and S-glutathionylated cystatin B, showed opposite trends in the two pathological groups. Statherin, cystatins SA and SN classified accurately PD from HC and AD subjects. α-defensins, histatin 1, oxidized S100A9, and P-B fragments were the best classifying factors between PD and AD patients. Interestingly statherin and thymosin ß4 correlated with defective olfactory functions in PD patients. All these outcomes highlighted implications of specific proteoforms involved in the innate-immune response and inflammation regulation at oral and systemic level, suggesting a possible panel of molecular and clinical markers suitable to recognize subjects affected by PD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , alfa-Defensinas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Cistatina B/análise , Cistatina B/metabolismo , Proteômica/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Defensinas/análise , alfa-Defensinas/metabolismo , Saliva/química , Proteínas e Peptídeos Salivares/metabolismo , Fatores de Transcrição/metabolismo , Biomarcadores/análise
6.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468384

RESUMO

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Assuntos
Depressão , Fator 2 de Crescimento de Fibroblastos , NF-kappa B , Animais , Ratos , Fator 2 de Crescimento de Fibroblastos/genética , Inflamação/genética , Neurogênese/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Depressão/genética , Depressão/metabolismo
7.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588614

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Interleucina-17/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/farmacologia , Proteômica , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/patologia , Transdução de Sinais , Camundongos Knockout , Sepse/patologia , Calgranulina B/genética , Calgranulina B/metabolismo
8.
Cancer Immunol Immunother ; 73(7): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713229

RESUMO

BACKGROUND: Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS: In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS: By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION: In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.


Assuntos
Neoplasias da Mama , Calgranulina B , Células Matadoras Naturais , Receptores de Estrogênio , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Calgranulina B/genética , Calgranulina B/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Microambiente Tumoral/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
9.
J Virol ; 97(8): e0081523, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578237

RESUMO

Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.


Assuntos
Calgranulina B , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Fatores de Transcrição de Domínio TEA , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinogênese/genética , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Proteômica , Fatores de Transcrição de Domínio TEA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Calgranulina B/genética
10.
Arch Biochem Biophys ; 758: 110087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977154

RESUMO

Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.


Assuntos
Amiloide , Calgranulina B , Proteínas Priônicas , Agregados Proteicos , Calgranulina B/metabolismo , Calgranulina B/química , Animais , Camundongos , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Amiloide/metabolismo , Amiloide/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Cinética
11.
Pharmacol Res ; 199: 107029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056513

RESUMO

Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.


Assuntos
Dissecção Aórtica , Proteoma , Camundongos , Animais , Humanos , Proteínas de Ligação ao Cálcio , Proteômica , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Modelos Animais de Doenças , Dissecção Aórtica/tratamento farmacológico
12.
BMC Infect Dis ; 24(1): 496, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755564

RESUMO

BACKGROUND: Early in the host-response to infection, neutrophils release calprotectin, triggering several immune signalling cascades. In acute infection management, identifying infected patients and stratifying these by risk of deterioration into sepsis, are crucial tasks. Recruiting a heterogenous population of patients with suspected infections from the emergency department, early in the care-path, the CASCADE trial aimed to evaluate the accuracy of blood calprotectin for detecting bacterial infections, estimating disease severity, and predicting clinical deterioration. METHODS: In a prospective, observational trial from February 2021 to August 2022, 395 patients (n = 194 clinically suspected infection; n = 201 controls) were enrolled. Blood samples were collected at enrolment. The accuracy of calprotectin to identify bacterial infections, and to predict and identify sepsis and mortality was analysed. These endpoints were determined by a panel of experts. RESULTS: The Area Under the Receiver Operating Characteristic (AUROC) of calprotectin for detecting bacterial infections was 0.90. For sepsis within 72 h, calprotectin's AUROC was 0.83. For 30-day mortality it was 0.78. In patients with diabetes, calprotectin had an AUROC of 0.94 for identifying bacterial infection. CONCLUSIONS: Calprotectin showed notable accuracy for all endpoints. Using calprotectin in the emergency department could improve diagnosis and management of severe infections, in combination with current biomarkers. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00020521.


Assuntos
Biomarcadores , Complexo Antígeno L1 Leucocitário , Sepse , Humanos , Complexo Antígeno L1 Leucocitário/sangue , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Biomarcadores/sangue , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções Bacterianas/sangue , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/mortalidade , Curva ROC , Adulto , Idoso de 80 Anos ou mais , Serviço Hospitalar de Emergência
13.
J Korean Med Sci ; 39(1): e13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38193329

RESUMO

BACKGROUND: Neutrophilic inflammation is a characteristic feature of idiopathic pulmonary fibrosis (IPF). S100 calcium-binding protein A9 (S100A9) is a neutrophil-derived protein involved in the development of neutrophil-related chronic inflammatory disorders. However, the role of S100A9 in IPF remains unclear. METHODS: We used enzyme-linked immunosorbent assays to measure S100A9 levels in bronchoalveolar lavage fluid (BALF) and serum obtained from healthy controls (HCs) and patients with IPF, non-specific interstitial pneumonia, hypersensitivity pneumonitis, and sarcoidosis. RESULTS: Compared with HCs, BALF S100A9 levels were significantly higher in IPF patients (P < 0.001), patients with hypersensitivity pneumonitis (P = 0.043), and patients with nonspecific interstitial pneumonia (P < 0.001). The S100A9 level in BALF of 0.093 ng/mL could distinguish IPF patients from HCs, with a specificity of 78.8% and a sensitivity of 81.6%. Similarly, the S100A9 level in BALF of 0.239 ng/mL had a specificity of 64.7% and a sensitivity of 66.7% for distinguishing IPF patients from patients with other interstitial lung diseases. Additionally, BALF S100A9 levels were significantly correlated with neutrophil counts (r = 0.356, P < 0.001) in BALF. IPF patients with S100A9 levels in BALF > 0.533 ng/mL had lower survival rates, compared with patients who had levels ≤ 0.553 ng/mL (n = 49; hazard ratio [HR], 3.62; P = 0.021). Combination analysis revealed that IPF patients with S100A9 levels in BALF> 0.553 ng/mL or neutrophil percentages > 49.1% (n = 43) had significantly lower survival rates than patients with S100A9 levels in BALF ≤ 0.553 ng/mL and neutrophil percentages ≤ 49.1% (n = 41) (HR, 3.91; P = 0.014). Additionally, patients with serum S100A9 levels > 0.077 ng/mL (n = 29) had significantly lower survival rates than patients with levels ≤ 0.077 ng/mL (n = 53, HR, 2.52; P = 0.013). S100A9 was expressed on neutrophils and macrophages in BALF from IPF patients as well as α-smooth muscle actin positive cells in the lung tissues. CONCLUSION: S100A9 is involved in the development and progression of IPF. Moreover, S100A9 levels in BALF and serum may be surrogate markers for IPF diagnosis and survival prediction, particularly when analyzed in combination with neutrophil percentages.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Inflamação , Líquido da Lavagem Broncoalveolar , Calgranulina B
14.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396791

RESUMO

Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-ß (Aß) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E , Calgranulina B , Agregados Proteicos , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Doenças Neuroinflamatórias , Isoformas de Proteínas/metabolismo , Calgranulina B/metabolismo
15.
BMC Genomics ; 24(1): 16, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635624

RESUMO

BACKGROUND: As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS: We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION: In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.


Assuntos
Toxinas Bacterianas , Calgranulina B , Intestinos , Animais , Clostridium perfringens , Diarreia , Células Epiteliais/metabolismo , Receptores CCR7/metabolismo , Suínos , Calgranulina B/metabolismo , Toxinas Bacterianas/efeitos adversos , Inflamação
16.
J Virol ; 96(17): e0096722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35943255

RESUMO

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.


Assuntos
COVID-19 , Quinases Semelhantes a Duplacortina , COVID-19/metabolismo , COVID-19/patologia , Calgranulina B/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Quinases Semelhantes a Duplacortina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucócitos Mononucleares/metabolismo , Quinolonas/farmacologia , SARS-CoV-2 , beta Catenina/metabolismo
17.
J Pediatr ; 258: 113406, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023943

RESUMO

OBJECTIVE: To evaluate the predictive value of biomarkers of inflammation like phagocyte-related S100 proteins and a panel of inflammatory cytokines in order to differentiate the child with acute lymphoblastic leukemia (ALL) from juvenile idiopathic arthritis (JIA). STUDY DESIGN: In this cross-sectional study, we measured S100A9, S100A12, and 14 cytokines in serum from children with ALL (n = 150, including 27 with arthropathy) and JIA (n = 236). We constructed predictive models computing areas under the curve (AUC) as well as predicted probabilities in order to differentiate ALL from JIA. Logistic regression was used for predictions of ALL risk, considering the markers as the respective exposures. We performed internal validation using repeated 10-fold cross-validation and recalibration, adjusted for age. RESULTS: In ALL, the levels of S100A9, S100A12, interleukin (IL)-1 beta, IL-4, IL-13, IL-17, matrix metalloproteinase-3, and myeloperoxidase were low compared with JIA (P < .001). IL-13 had an AUC of 100% (95% CI 100%-100%) due to no overlap between the serum levels in the 2 groups. Further, IL-4 and S100A9 had high predictive performance with AUCs of 99% (95% CI 97%-100%) and 98% (95% CI 94%-99%), respectively, exceeding both hemoglobin, platelets, C-reactive protein, and erythrocyte sedimentation rate. CONCLUSIONS: The biomarkers S100A9, IL-4, and IL-13 might be valuable markers to differentiate ALL from JIA.


Assuntos
Artrite Juvenil , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Artrite Juvenil/complicações , Artrite Juvenil/diagnóstico , Proteína S100A12 , Interleucina-13 , Estudos Transversais , Interleucina-4 , Biomarcadores , Citocinas , Sedimentação Sanguínea , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
18.
Cytokine ; 172: 156387, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37826869

RESUMO

BACKGROUND: S100A12, S100A8, and S100A9 are inflammatory disease biomarkers whose functional significance in idiopathic pulmonary fibrosis (IPF) remains unclear. We evaluated the significance of S100A12, S100A8, and S100A9 levels in IPF development and prognosis. METHODS: The dataset was collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes were screened using GEO2R. We conducted a retrospective study of 106 patients with IPF to explore the relationships between different biomarkers and poor outcomes. Pearson's correlation coefficient, Kaplan-Meier, Cox regression, and functional enrichment analyses were used to evaluate relationships between these biomarkers' levels and clinical parameters or prognosis. RESULTS: Serum levels of S100A12, S100A8, and S100A9 were significantly elevated in patients with IPF. The two most significant co-expression genes of S100A12 were S100A8 and S100A9. Patients with levels of S100A12 (median 231.21 ng/mL), S100A9 (median 57.09 ng/mL) or S100A8 (median 52.20 ng/mL), as well as combined elevated S100A12, S100A9, and S100A8 levels, exhibited shorter progression-free survival and overall survival. Serum S100A12 and S100A8, S100A12 and S100A9, S100A9 and S100A8 concentrations also displayed a strong positive correlation (rs2 = 0.4558, rs2 = 0.4558, rs2 = 0.6373; P < 0.001). S100A12 and S100A8/9 concentrations were independent of FVC%, DLCO%, and other clinical parameters (age, laboratory test data, and smoking habit). Finally, in multivariate analysis, the serum levels of S100A12, S100A8, and S100A9 were significant prognostic factors (hazard ratio 1.002, P = 0.032, hazard ratio 1.039, P = 0.001, and hazard ratio 1.048, P = 0.003). CONCLUSIONS: S100A12, S100A8, and S100A9 are promising circulating biomarkers that may aid in determining IPF patient prognosis. Multicenter clinical trials are needed to confirm their clinical value.


Assuntos
Fibrose Pulmonar Idiopática , Proteína S100A12 , Humanos , Biomarcadores , Calgranulina A/genética , Calgranulina B/genética , Fibrose Pulmonar Idiopática/genética , Prognóstico , Estudos Retrospectivos
19.
BMC Cancer ; 23(1): 513, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280516

RESUMO

BACKGROUND: Cancer cachexia, occurring in ~ 80% pancreatic cancer (PC) patients overall, is a paraneoplastic syndrome mediated by cancer-induced systemic inflammation and characterized by weight loss and skeletal muscle wasting. Identifying clinically relevant PC-derived pro-inflammatory factors with cachexigenic potential may provide novel insights and therapeutic strategies. METHODS: Pro-inflammatory factors with cachexigenic potential in PC were identified by bioinformatic analysis. The abilities of selected candidate factors in inducing skeletal muscle atrophy were investigated. Expression levels of candidate factors in tumors and sera was compared between PC patients with and without cachexia. Associations between serum levels of the candidates and weight loss were assessed in PC patients. RESULTS: S100A8, S100A9, and S100A8/A9 were identified and shown to induce C2C12 myotube atrophy. Tumors of PC patients with cachexia had markedly elevated expression of S100A8 (P = 0.003) and S100A9 (P < 0.001). PC patients with cachexia had significantly higher serum levels of S100A8, S100A9 and S100A8/A9. Serum levels of these factors positively correlated with percentage of weight loss [correlation coefficient: S100A8: 0.33 (P < 0.001); S100A9: 0.30 (P < 0.001); S100A8/A9: 0.24 (P = 0.004)] and independently predicted the occurrence of cachexia [adjusted odds ratio (95% confidence interval) per 1ng/ml increase: S100A8 1.11 (1.02-1.21), P = 0.014; S100A9 1.10 (1.04-1.16), P = 0.001; per 1 µg/ml increase: S100A8/A9 1.04 (1.01-1.06), P = 0.009]. CONCLUSIONS: Atrophic effects of S100A8, S100A9, and S100A8/A9 indicated them as potential pathogenic factors of PC-induced cachexia. In addition, the correlation with the degree of weight loss and prediction of cachexia in PC patients implicated their potential utility in the diagnosis of PC-induced cachexia.


Assuntos
Caquexia , Neoplasias Pancreáticas , Humanos , Caquexia/etiologia , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas
20.
Protein Expr Purif ; 208-209: 106275, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084837

RESUMO

S100A8/A9 (calprotectin) is a damage-associated molecular pattern molecule (DAMP) that plays a key role in the innate immune response of mammalia. S100A8/A9 is therefore widely used as a biomarker in human and veterinary medicine, but diagnostic tools for the detection of S100A8/A9 are rarely optimised for the specific organism, since the corresponding S100A8/A9 is often not available. There is need for an easy, reliable protocol for the production of recombinant, highly pure S100A8/A9 from various mammalia. Here we describe the expression and purification of recombinant human and porcine S100A8/A9 by immobilized metal affinity chromatography (IMAC), which takes advantage of the intrinsic, high-affinity binding of native un-tagged S100A8/A9 to metal ions. Highly pure S100A8/A9 is obtained by a combination of IMAC, ion exchange and size exclusion chromatographic steps. Considering the high sequence homology and conservation of the metal ion coordinating residues of S100A8/A9 metal binding sites, the protocol is presumably applicable to S100A8/A9 of various mammalia.


Assuntos
Calgranulina B , Complexo Antígeno L1 Leucocitário , Humanos , Animais , Suínos , Complexo Antígeno L1 Leucocitário/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Sus scrofa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA