Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Microbiol ; 23(1): 271, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759206

RESUMO

Anaplasma phagocytophilum is an intracellular obligate parasite that causes granulocytic anaplasmosis. Effector Ats-1 is an important virulence factor of A. phagocytophilum. Multiomics screening and validation has been used to determine that Ats-1 regulates host cell apoptosis and energy metabolism through the respiratory chain mPTP axis. In this study, a total of 19 potential binding proteins of Ats-1 in host cells were preliminarily screened using a yeast two-hybrid assay, and the interaction between syntenin-1 (SDCBP) and Ats-1 was identified through immunoprecipitation. Bioinformatics analysis showed that SDCBP interacted with SDC1, SDC2, and SDC4 and participated in the host exosome secretion pathway. Further studies confirmed that Ats-1 induced the expression of SDC1, SDC2, and SDC4 in HEK293T cells through SDCBP and increased the exosome secretion of these cells. This indicated that SDCBP played an important role in Ats-1 regulating the exosome secretion of the host cells. These findings expand our understanding of the intracellular regulatory mechanism of A. phagocytophilum, which may enhance its own infection and proliferation by regulating host exosome pathways.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Exossomos , Animais , Humanos , Sinteninas , Células HEK293
2.
Biotechnol Appl Biochem ; 69(1): 240-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432665

RESUMO

Syndecan-binding protein (SDCBP) has been reported to critically process a core role in tumorigenesis. This study was conducted to characterize a novel regulatory network of SDCBP in gastric carcinoma (GC) cells. Our findings indicated that overexpression of SDCBP promoted the proliferation of GC cell and increased proliferating cell nuclear antigen (PCNA) expression. Moreover, the overexpression of SDCBP suppressed the apoptosis of GC cell along with a decrease of Bax/Bcl-2 ratio and induction of PI3K/AKT/mTOR activation. However, knockdown of SDCBP exhibited opposed effects on GC cells. Furthermore, silencing SDCBP significantly inhibited GC cell viability and PCNA expression accompanied with the upregulated cell apoptosis and Bax/Bcl-2 ratio, which was regulated by PI3K/AKT/mTOR signaling pathway. And it was further determined that PI3K inhibitor LY294002, AKT inhibitor Torin1, and mTOR inhibitor MK-2206 suppressed the apoptosis. In conclusion, SDCBP promotes the growth ability of GC by inducing the PCNA expression and inhibiting GC cell apoptosis via inactivation of the PI3K/AKT/mTOR pathway.


Assuntos
Carcinoma , Fosfatidilinositol 3-Quinases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinteninas , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
J Cell Mol Med ; 25(14): 7001-7012, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137173

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/patologia , COVID-19/patologia , Células Epiteliais/metabolismo , RNA-Seq , Índice de Gravidade de Doença , Análise de Célula Única , Sinteninas/metabolismo , Apresentação de Antígeno/genética , Líquido da Lavagem Broncoalveolar , COVID-19/genética , COVID-19/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Mudanças Depois da Morte , SARS-CoV-2/fisiologia , Regulação para Cima/genética
4.
World J Surg Oncol ; 19(1): 199, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34218800

RESUMO

BACKGROUND: Dysregulation of long non-coding RNAs has been implied to connect with cancer progression. This research was to decipher the mechanism of long non-coding RNA SDCBP2-AS1 in ovarian cancer (OC) through regulation of microRNA (miR)-100-5p and ependymin-related protein 1 (EPDR1). METHODS: LncRNA SDCBP2-AS1 and EPDR1 levels in OC were assessed by Gene Expression Profiling Interactive Analysis. lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 levels in OC tissues and cells were determined. SKOV3 and A2780 cells were transfected with lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1-related plasmids or sequences, and then their functions in cell viability, apoptosis, migration, and invasion were evaluated. The interplay of lncRNA SDCBP2-AS1, miR-100-5p, and EPDR1 was clarified. RESULTS: LncRNA SDCBP2-AS1 and EPDR1 levels were suppressed whilst miR-100-5p level was elevated in OC. After upregulating lncRNA SDCBP2-AS1 or EPDR1, viability, migration, and invasion of OC cells were impaired, and apoptosis rate was increased. Downregulating EPDR1 or upregulating miR-100-5p partially mitigated upregulated lncRNA SDCBP2-AS1-induced impacts on the biological functions of OC cells. LncRNA SDCBP2-AS1 sponged miR-100-5p, and EPDR1 was targeted by miR-100-5p. CONCLUSION: It is illustrated that lncRNA SDCBP2-AS1 regulates EPDR1 by sponge adsorption of miR-100-5p to inhibit the progression of OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Neoplasias Ovarianas/genética , Prognóstico
5.
Pharmacol Res ; 155: 104695, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061839

RESUMO

The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.


Assuntos
Metástase Neoplásica/genética , Neoplasias/terapia , Sinteninas/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia
6.
IUBMB Life ; 71(5): 587-600, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589231

RESUMO

Melanoma is the main cause of death associated with skin cancer. Surgical resection and adjuvant therapy are currently effective treatments, but the recurrence rate is very high. The understanding of microRNA (miR) dynamics after surgical resection of melanoma is essential to accurately explain the changes in the recurrence of melanoma. In this study, we hypothesized that microRNA-23a (miR-23a) affects the cell proliferation, migration, and invasion of melanoma with a mechanism related to SDCBP and the MAPK/ERK signaling pathway. To validate this, we performed a series of experiments in cells of melanoma modeled. Initially, positive expression of SDCBP and morphology of normal and melanoma tissues and cells were observed. Expression of miR-23a, SDCBP, and MAPK/ERK signaling pathway-related genes was identified in melanoma tissues. Melanoma cells transfected with mimic or inhibitor of miR-23a or si-SDCBP were detected to validate effect of miR-23a on SDCBP and the MAPK/ERK signaling pathway. MTT assay, scratch test, transwell assay, and flow cytometry were performed to evaluate cell viability, invasion, metastasis, and apoptosis in vitro, respectively. Tumorigenicity assay in nude mice was conducted to test the tumorigenesis of the transfected cells in vivo. High positive expression of SDCBP and abnormal morphology were observed in melanoma tissues and cells. Reduced expression of miR-23a and increased expression of SDCBP and MAPK/ERK signaling pathway-related genes were identified in the melanoma tissues of melanoma mice. Overexpressed miR-23a dampened SDCBP and the MAPK/ERK signaling pathway. The melanoma cells with overexpressed miR-23a presented ascended cell apoptosis and descended cell proliferation, migration, invasion as well as tumor size. Taken together, our study demonstrated that miR-23a could inhibit the development of melanoma in mice through a negative feedback regulation of SDCBP and the MAPK/ERK signaling pathway. © 2018 IUBMB Life, 71(5):587-600, 2019.


Assuntos
Movimento Celular , Proliferação de Células , Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Melanoma Experimental/patologia , MicroRNAs/genética , Sinteninas/metabolismo , Animais , Apoptose , Ciclo Celular , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Invasividade Neoplásica , Sinteninas/genética , Células Tumorais Cultivadas
7.
Biochem Biophys Res Commun ; 482(1): 126-133, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720715

RESUMO

Breast cancer is the most deadly cancer among women and the second leading cause of cancer death worldwide. Treatment effectiveness is complicated with tumor invasiveness/drug resistance. To tailor treatments more effectively to individual patients, it is important to define tumor growth and metastasis at molecular levels. SDCBP is highly overexpressed and associated with a strikingly poor prognosis in breast cancer. However the post transcriptional regulation of SDCBP overexpression remains to be an unexplored area. Our study reveals that miR-216b directly regulates SDCBP expression by binding to its 3'UTR region. miR-216b is a tumor suppressive miRNA and it is underexpressed during metastatic breast cancer. Consequently, overexpression of miR-216b resulted in decreased proliferation, migration and invasion in BC cell lines by modulating the expression of SDCBP. Inhibition of miR-216b divergent the tumor suppressive role by inducing the growth proliferation, migration and invasion in vitro. There is therefore a negative correlation between the expression of miR-216b and its target gene SDCBP in the BC tissue samples as well as cell lines. Simultaneous expression of miR-216b and SDCBP rescued the growth, migration and invasion effect suggesting that tumor suppressive action of miR-216b may be directly mediated by SDCBP. In summary, the study identifies miR-216b as a regulator of SDCBP expression in breast cancer which can potentially be targeted for developing newer therapies for the effective treatment of this killer disease.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/secundário , Proliferação de Células/genética , Genes Supressores de Tumor , MicroRNAs/metabolismo , Sinteninas/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células Tumorais Cultivadas
8.
Sci Rep ; 14(1): 9167, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649770

RESUMO

Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.


Assuntos
Proliferação de Células , Receptores ErbB , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Sinteninas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/metabolismo , Animais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinteninas/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia
9.
Cell Signal ; 112: 110889, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714445

RESUMO

Acute myeloid leukemia (AML) remains a biologically heterogeneous disease with high morbidity and mortality under the existing treatment strategies. Our previous study showed that E2A might be a potential therapeutic target for AML, but the underlying mechanism was unclear. Here, we found that SDCBP2 might be a target gene of E2A through RNA-seq combined ChIP-seq screening. This was also demonstrated by Co-IP experiment. Furthermore, the expression of E2A and SDCBP2 were increased in both AML cell lines and patient samples. Downregulation of SDCBP2 expression suppressed proliferation and induced differentiation of AML cells. In human xenograft mouse leukemia model, inhibiton of SDCBP2 expression delayed AML progression. Overall, the above results confirmed that SDCBP2 might be a target gene of E2A and a potential therapeutic target for AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Leucemia Mieloide Aguda/metabolismo
10.
Cancer Genomics Proteomics ; 20(2): 171-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870688

RESUMO

BACKGROUND/AIM: Structural abnormalities of chromosome bands 8q11-13, resulting in rearrangement of the pleomorphic adenoma gene 1 (PLAG1), are known to characterize lipoblastoma, a benign fat cell tumor, found mainly in children. Here, we describe 8q11-13 rearrangements and their molecular consequences on PLAG1 in 7 lipomatous tumors in adults. MATERIALS AND METHODS: The patients were 5 males and 2 females between 23 and 62 years old. The tumors, namely five lipomas, one fibrolipoma and one spindle cell lipoma, were examined using G-banding with karyotyping, fluorescence in situ hybridization (FISH; three tumors), RNA sequencing, reverse transcription (RT) PCR, and Sanger sequencing analyses (two tumors). RESULTS: All 7 tumors had karyotypic aberrations which included rearrangements of chromosome bands 8q11-13 (the criterion for selection into this study). FISH analyses with a PLAG1 break apart probe showed abnormal hybridization signals in both interphase nuclei and on metaphase spreads indicating PLAG1 rearrangement. RNA sequencing detected fusion between exon 1 of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) and exon 2 or 3 of PLAG1 in a lipoma and fusion between exon 2 of syndecan binding protein (SDCBP) and exon 2 or 3 of PLAG1 in a spindle cell lipoma. The HNRNPA2B1::PLAG1 and SDCBP::PLAG1 fusion transcripts were confirmed using RT-PCR/Sanger sequencing analyses. CONCLUSION: As 8q11-13 aberrations/PLAG1-rearrangements/PLAG1-chimeras may evidently be a defining pathogenetic feature of lipogenic neoplasms of several histological types and not just lipoblastomas, we suggest that the term "8q11-13/PLAG1-rearranged lipomatous tumors" be generally adopted for this tumor subset.


Assuntos
Lipoma , Humanos , Feminino , Masculino , Hibridização in Situ Fluorescente , Éxons , Adipócitos , Núcleo Celular , Sinteninas , Proteínas de Ligação a DNA
11.
Cancer Commun (Lond) ; 42(11): 1141-1161, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209503

RESUMO

BACKGROUND: Gastric cancer (GC) is among the most malignant tumors, yet the pathogenesis is not fully understood, especially the lack of detailed information about the mechanisms underlying long non-coding RNA (lncRNA)-mediated post-translational modifications. Here, the molecular mechanisms and clinical significance of the novel lncRNA syndecan-binding protein 2-antisense RNA 1 (SDCBP2-AS1) in the tumorigenesis and progression of GC were investigated. METHODS: The expression levels of SDCBP2-AS1 in 132 pairs of GC and adjacent normal tissues were compared, and the biological functions were assessed in vitro and in vivo. RNA pull-down and immunoprecipitation assays were conducted to clarify the interactions of SDCBP2-AS1 and heterogeneous nuclear ribonucleoprotein (hnRNP) K. RNA-sequencing, immunoprecipitation, immunofluorescence, and luciferase analyses were performed to investigate the functions of SDCBP2-AS1. RESULTS: SDCBP2-AS1 was significantly downregulated in GC tissues and predictive of poor patient prognosis. Silencing of SDCBP2-AS1 promoted the proliferation and migration of GC cells both in vitro and in vivo. Mechanically, SDCBP2-AS1 physically bound to hnRNP K to repress SUMOylation of hnRNP K and facilitated ubiquitination of hnRNP K and ß-catenin, thereby promoting the degradation of ß-catenin in the cytoplasm. Silencing of SDCBP2-AS1 caused SUMOylation of hnRNP K and stabilized ß-catenin activity, which altered transcription of downstream genes, resulting in tumorigenesis and metastasis of GC. Moreover, the knockdown of hnRNP K partially abrogated the effects of SDCBP2-AS1. CONCLUSIONS: SDCBP2-AS1 interacts with hnRNP K to suppress tumorigenesis and metastasis of GC and regulates post-transcriptional modifications of hnRNP K to destabilize ß-catenin. These findings suggest SDCBP2-AS1 as a potential target for the treatment of GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Sumoilação/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias Gástricas/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Sinteninas/genética , Sinteninas/metabolismo
12.
Autophagy ; 18(11): 2547-2560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35220892

RESUMO

Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.


Assuntos
Vesículas Extracelulares , Sinteninas , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Sinteninas/metabolismo , Cloroquina/farmacologia , Autofagia/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Vesículas Extracelulares/metabolismo , Ácido gama-Aminobutírico
13.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34638436

RESUMO

To characterize the mechanisms that govern chemoresistance, we performed a comparative proteomic study analyzing head and neck squamous cell carcinoma (HNSCC) cells: CCL-138 (parental), CCL-138-R (cisplatin-resistant), and cancer stem cells (CSCs). Syntenin-1 (SDCBP) was upregulated in CCL-138-R cells and CSCs over parental cells. SDCBP depletion sensitized biopsy-derived and established HNSCC cell lines to cisplatin (CDDP) and reduced CSC markers, Src activation being the main SDCBP downstream target. In mice, SDCBP-depleted cells formed tumors with decreased mitosis, Ki-67 positivity, and metastasis over controls. Moreover, the fusocellular pattern of CCL-138-R cell-derived tumors reverted to a more epithelial morphology upon SDCBP silencing. Importantly, SDCBP expression was associated with Src activation, poor differentiated tumor grade, advanced tumor stage, and shorter survival rates in a series of 382 HNSCC patients. Our results reveal that SDCBP might be a promising therapeutic target for effectively eliminating CSCs and CDDP resistance.

14.
Front Endocrinol (Lausanne) ; 12: 598656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828526

RESUMO

Pheochromocytoma, as a neuroendocrine tumor with the highest genetic correlation in all types of tumors, has attracted extensive attention. Von Hipper Lindau (VHL) has the highest mutation frequency among the genes associated with pheochromocytoma. However, the effect of VHL on the proteome of pheochromocytoma remains to be explored. In this study, the VHL knockdown (VHL-KD) PC12 cell model was established by RNA interference (shRNA). We compared the proteomics of VHL-KD and VHL-WT PC12 cell lines. The results showed that the expression of 434 proteins (VHL shRNA/WT > 1.3) changed significantly in VHL-KD-PC12 cells. Among the 434 kinds of proteins, 83 were involved in cell proliferation, cell cycle and cell migration, and so on. More importantly, among these proteins, we found seven novel key genes, including Connective Tissue Growth Factor (CTGF), Syndecan Binding Protein (SDCBP), Cysteine Rich Protein 61 (CYR61/CCN1), Collagen Type III Alpha 1 Chain (COL3A1), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type V Alpha 2 Chain (COL5A2), and Serpin Family E Member 1 (SERPINE1), were overexpressed and simultaneously regulated cell proliferation and migration in VHL-KD PC12 cells. Furthermore, the abnormal accumulation of HIF2α caused by VHL-KD significantly increased the expression of these seven genes during hypoxia. Moreover, cell-counting, scratch, and transwell assays demonstrated that VHL-KD could promote cell proliferation and migration, and changed cell morphology. These findings indicated that inhibition of VHL expression could promote the development of pheochromocytoma by activating the expression of cell proliferation and migration associated genes.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Movimento Celular , Proliferação de Células , Feocromocitoma/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/fisiopatologia , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Humanos , Mutação , Feocromocitoma/metabolismo , Feocromocitoma/fisiopatologia , Sinteninas/genética , Sinteninas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
15.
Adv Cancer Res ; 144: 137-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31349898

RESUMO

With few exceptions, metastasis is the terminal stage of cancer with limited therapeutic options. Metastasis consists of numerous phenotypic and genotypic alterations of cells that are directly and indirectly induced by multiple intrinsic (cellular) and extrinsic (micro-environmental) factors. To metastasize, a cancer cell often transitions from an epithelial to mesenchymal morphology (EMT), modifies the extracellular matrix, forms emboli and survives in the circulation, escapes immune surveillance, adheres to sites distant from the initial tumor and finally develops a blood supply (angiogenesis) and colonizes in a secondary niche (a micrometastasis). Scientific advances have greatly enhanced our understanding of the precise molecular and genetic changes, operating independently or collectively, that lead to metastasis. This review focuses on a unique gene, melanoma differentiation associated gene-9 (also known as Syntenin-1; Syndecan Binding Protein (sdcbp); mda-9/syntenin), initially cloned and characterized from metastatic human melanoma and shown to be a pro-metastatic gene. In the last two decades, our comprehension of the diversity of actions of MDA-9/Syntenin on cellular phenotype has emerged. MDA-9/Sytenin plays pivotal regulatory roles in multiple signaling cascades and orchestrates both metastatic and non-metastatic events. Considering the relevance of this gene in controlling cancer invasion and metastasis, approaches have been developed to uniquely and selectively target this gene. We also provide recent updates on strategies that have been successfully employed in targeting MDA-9/Syntenin resulting in profound pre-clinical anti-cancer activity.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Sinteninas/antagonistas & inibidores , Antineoplásicos/farmacologia , Humanos , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sinteninas/metabolismo
16.
Cancers (Basel) ; 12(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878027

RESUMO

Despite some progress, treating advanced prostate cancer remains a major clinical challenge. Recent studies have shown that prostate cancer can originate from undifferentiated, rare, stem cell-like populations within the heterogeneous tumor mass, which play seminal roles in tumor formation, maintenance of tumor homeostasis and initiation of metastases. These cells possess enhanced propensity toward chemoresistance and may serve as a prognostic factor for prostate cancer recurrence. Despite extensive studies, selective targeted therapies against these stem cell-like populations are limited and more detailed experiments are required to develop novel targeted therapeutics. We now show that MDA-9/Syntenin/SDCBP (MDA-9) is a critical regulator of survival, stemness and chemoresistance in prostate cancer stem cells (PCSCs). MDA-9 regulates the expression of multiple stem-regulatory genes and loss of MDA-9 causes a complete collapse of the stem-regulatory network in PCSCs. Loss of MDA-9 also sensitizes PCSCs to multiple chemotherapeutics with different modes of action, such as docetaxel and trichostatin-A, suggesting that MDA-9 may regulate multiple drug resistance. Mechanistically, MDA-9-mediated multiple drug resistance, stemness and survival are regulated in PCSCs through activation of STAT3. Activated STAT3 regulates chemoresistance in PCSCs through protective autophagy as well as regulation of MDR1 on the surface of the PCSCs. We now demonstrate that MDA-9 is a critical regulator of PCSC survival and stemness via exploiting the inter-connected STAT3 and c-myc pathways.

17.
Cancer Biol Med ; 15(1): 29-38, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29545966

RESUMO

OBJECTIVE: Tamoxifen is used as a complementary treatment for estrogen receptor (ER)-positive breast cancer (BCa), but many patients developed resistance. The aim of this study was to examine the role of syndecan-binding protein (SDCBP) silencing in ER-positive BCa cells. METHODS: In MCF-7/T47D cells, the effects of SDCBP silence/overexpression on cell proliferation and estrogenic response were examined. Cell proliferation was examined using the MTT assay and cell cycle regulators were examined by Western blot. Estrogen response was examined from a luciferase activity and evaluation of transcript levels of pS2 and progesterone receptor (PR) upon estrogen administration. Samples of ER-positive BCa were stained with ERα, PR, and SDCBP antibodies, and their expression correlations were analyzed. RESULTS: We found that SDCBP silencing inhibited the proliferation of ER-positive BCa cells and arrested a greater number of cells in the G1 phase of the cell cycle compared to tamoxifen alone, while SDCBP overexpression limited the anti-cancer effects of tamoxifen. SDCBP silencing and overexpression also enhanced and attenuated the estrogenic response, respectively. Expression of SDCBP was negatively correlated with PR, ERα, and the PR/ERα ratio in ER-positive BCa tissue samples. CONCLUSIONS: SDCBP may be involved in tamoxifen resistance in ER-positive BCa. Tamoxifen treatment combined with SDCBP silencing may provide a novel treatment for endocrine therapy-resistant BCa.

18.
Biochim Open ; 4: 119-126, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29450149

RESUMO

MDCK cells are widely used to study the differential targeting of membrane transporters to apical and basolateral membrane but its canine origin limited the commercial tools available for the analysis of protein trafficking machinery. Because apical and basolateral membranes are only found in differentiated epithelial cells, genes critical for differential targeting may be specifically up-regulated upon MDCK cell differentiation. To search for these genes, a cross-species screening strategy was used. We first analyzed the human microarray data for protein trafficking-related genes that were up-regulated in colon carcinoma Caco2 cells upon differentiation. The results of mouse 44K gene expression microarray analysis were then used to extract additional candidate genes that showed higher expression in normal colon epithelium compared to primary embryonic fibroblasts. Finally, NCBI genomic sequence information was used to design RT-PCR primers for 13 candidate and 10 negative control genes and used to analyze MDCK cells at 2, 13 and 17 days after seeding. To determine whether the gene up-regulation was specific in epithelial differentiation, we also performed RT-PCR on rat non-differentiating intestinal IEC-6 cells and mouse C2C12 cells, a differentiating myoblast model. Of the 13 candidate genes, 3 genes, SDCBP2, KIF12, KIF27, met all criteria of specific up-regulation in differentiated MDCK cells. In addition, KIF13A showed up-regulation in differentiated MDCK and C2C12 cells but not in IEC-6 cells cultured for the same duration. The functions of these genes need to be analyzed in the future. This cross-species screening strategy may be useful for other non-human, non-rodent cell models.

19.
Am J Transl Res ; 9(10): 4617-4626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118922

RESUMO

Syndecan-binding protein (SDCBP), which is induced by tumor necrosis factor-α and interferon-γ, controls the proliferation and invasion of several different types of cancer cells. Interleukin-6 (IL-6) is known to play an important role in the glioma cell growth and invasion. The present study aimed to investigate the relationship between IL-6 and SDCBP in glioma cells. SDCBP expression was knocked down in two glioma cell lines (T98G and U87) by small interfering RNA (siRNA) transfection. Cell proliferation and invasion were significantly repressed following SDCBP knockdown, and there was a positive correlation between SDCBP and IL-6 expression levels in glioma tissues. IL-6 stimulation dose- and time-dependently induced SDCBP expression at both mRNA and protein levels. Furthermore, pre-treatment with the Janus kinase 2 (JAK2) inhibitor AG490 abolished the IL-6-induced SDCBP expression, suggesting that the effect of IL-6 on SDCBP transcription is dependent on JAK2/signal transducer and activator of transcription 3 (STAT3) signaling. Finally, IL-6 did not stimulate glioma cell growth or invasion when SDCBP expression was suppressed. In summary, our results suggest that IL-6 promotes glioma cell proliferation and invasion by inducing SDCBP expression, which is mediated by JAK2/STAT3 signaling.

20.
Oncotarget ; 7(34): 54102-54119, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27472461

RESUMO

Glioblastoma multiforme (GBM) is an aggressive cancer with current therapies only marginally impacting on patient survival. Glioma stem cells (GSCs), a subpopulation of highly tumorigenic cells, are considered major contributors to glioma progression and play seminal roles in therapy resistance, immune evasion and increased invasion. Despite clinical relevance, effective/selective therapeutic targeting strategies for GSCs do not exist, potentially due to the lack of a definitive understanding of key regulators of GSCs. Consequently, there is a pressing need to identify therapeutic targets and novel options to effectively target this therapy-resistant cell population. The precise roles of GSCs in governing GBM development, progression and prognosis are under intense scrutiny, but key upstream regulatory genes remain speculative. MDA-9/Syntenin (SDCBP), a scaffold protein, regulates tumor pathogenesis in multiple cancers. Highly aggressive cancers like GBM express elevated levels of MDA-9 and contain increased populations of GSCs. We now uncover a unique function of MDA-9 as a facilitator and determinant of glioma stemness and survival. Mechanistically, MDA-9 regulates multiple stemness genes (Nanog, Oct4 and Sox2) through activation of STAT3. MDA-9 controls survival of GSCs by activating the NOTCH1 pathway through phospho-Src and DLL1. Once activated, cleaved NOTCH1 regulates C-Myc expression through RBPJK, thereby facilitating GSC growth and proliferation. Knockdown of MDA-9 affects the NOTCH1/C-Myc and p-STAT3/Nanog pathways causing a loss of stemness and initiation of apoptosis in GSCs. Our data uncover a previously unidentified relationship between MDA-9 and GSCs, reinforcing relevance of this gene as a potential therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/fisiologia , Sinteninas/fisiologia , Animais , Astrócitos/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Feminino , Glioma/tratamento farmacológico , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/fisiologia , Receptor Notch1/fisiologia , Fator de Transcrição STAT3/fisiologia , Sinteninas/antagonistas & inibidores , Sinteninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA