Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635631

RESUMO

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Assuntos
Sirtuína 3 , Sirtuínas , Viroses , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Imunidade Inata , Lisina , Sirtuína 3/genética , Sirtuínas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
2.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858407

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Interações Hospedeiro-Patógeno , Terapia de Alvo Molecular , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/metabolismo , COVID-19/virologia , Células CACO-2 , Exorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sirtuínas/metabolismo , Succinatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
Genomics ; 116(1): 110773, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158141

RESUMO

Preadipocyte differentiation represents a critical stage in adipogenesis, with mitochondria playing an undeniable pivotal role. Given the intricate interplay between transcription and metabolic signaling during adipogenesis, the regulation of sirtuin 5 (SIRT5) on mitochondrial function and lipid metabolism was revealed via multiple omics analysis. The findings suggest that SIRT5 plays a crucial role in promoting mitochondrial biosynthesis and maintaining mitochondrial function during preadipocyte differentiation. Moreover, SIRT5 modulates the metabolic levels of numerous bioactive substances by extensively regulating genes expression associated with differentiation, energy metabolism, lipid synthesis, and mitochondrial function. Finally, SIRT5 was found to suppress triacylglycerols (TAG) accumulation while enhancing the proportion and diversity of unsaturated fatty acids, and providing conditions for the expansion and stability of membrane structure during mitochondrial biosynthesis through numerous gene regulations. Our findings provide a foundation for the identification of crucial functional genes, signaling pathways, and metabolic substances associated with adipose tissue differentiation and metabolism.


Assuntos
Metabolismo dos Lipídeos , Sirtuínas , Bovinos , Animais , Sirtuínas/genética , Sirtuínas/metabolismo , Adipogenia , Mitocôndrias/genética , Tecido Adiposo/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38761998

RESUMO

BACKGROUND: Previous studies implied that local M2 polarization of macrophage promoted mucosal edema and exacerbated TH2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We sought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: Real-time reverse transcription-quantitative PCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5-knockout mice were used to establish a nasal polyp model with TH2 inflammation and to investigate the effects of SIRT5 in macrophage on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophage markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5-deficient mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages by promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting alternative polarization of macrophages, thus providing a potential target for CRSwNP interventions.

5.
Curr Issues Mol Biol ; 46(2): 1020-1046, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392183

RESUMO

Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.

6.
J Hepatol ; 80(1): 10-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890719

RESUMO

BACKGROUND & AIMS: Sirtuin 5, encoded by the SIRT5 gene, is a NAD+-dependent deacylase that modulates mitochondrial metabolic processes through post-translational modifications. In this study, we aimed to examine the impact of the SIRT5 rs12216101 T>G non-coding single nucleotide polymorphism on disease severity in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: The rs12216101 variant was genotyped in 2,606 consecutive European patients with biopsy-proven NAFLD. Transcriptomic analysis, expression of mitochondrial complexes and oxidative stress levels were measured in liver samples from a subset of bariatric patients. Effects of SIRT5 pharmacological inhibition were evaluated in HepG2 cells exposed to excess free fatty acids. Mitochondrial energetics in vitro were investigated by high-performance liquid chromatography. RESULTS: In the whole cohort, the frequency distribution of SIRT5 rs12216101 TT, TG and GG genotypes was 47.0%, 42.3% and 10.7%, respectively. At multivariate logistic regression analysis adjusted for sex, age >50 years, diabetes, and PNPLA3 rs738409 status, the SIRT5 rs12216101 T>G variant was associated with the presence of non-alcoholic steatohepatitis (odds ratio 1.20, 95% CI 1.03-1.40) and F2-F4 fibrosis (odds ratio 1.18; 95% CI 1.00-1.37). Transcriptomic analysis showed that the SIRT5 rs12216101 T>G variant was associated with upregulation of transcripts involved in mitochondrial metabolic pathways, including the oxidative phosphorylation system. In patients carrying the G allele, western blot analysis confirmed an upregulation of oxidative phosphorylation complexes III, IV, V and consistently higher levels of reactive oxygen species, reactive nitrogen species and malondialdehyde, and lower ATP levels. Administration of a pharmacological SIRT5 inhibitor preserved mitochondrial energetic homeostasis in HepG2 cells, as evidenced by restored ATP/ADP, NAD+/NADH, NADP+/NADPH ratios and glutathione levels. CONCLUSIONS: The SIRT5 rs12216101 T>G variant, heightening SIRT5 activity, is associated with liver damage, mitochondrial dysfunction, and oxidative stress in patients with NAFLD. IMPACT AND IMPLICATIONS: In this study we discovered that the SIRT5 rs12216101 T>G variant is associated with higher disease severity in patients with non-alcoholic fatty liver disease (NAFLD). This risk variant leads to a SIRT5 gain-of-function, enhancing mitochondrial oxidative phosphorylation and thus leading to oxidative stress. SIRT5 may represent a novel disease modulator in NAFLD.


Assuntos
Doenças Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Genótipo , Polimorfismo de Nucleotídeo Único , Fígado , Doenças Mitocondriais/complicações , Trifosfato de Adenosina , Predisposição Genética para Doença , Sirtuínas/genética
7.
EMBO J ; 39(11): e103285, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32301534

RESUMO

RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agregados Proteicos , Sirtuínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sirtuínas/genética
8.
Funct Integr Genomics ; 24(2): 60, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499806

RESUMO

BACKGROUND: Sirtuin 5 (SIRT5) is a promising therapeutic target involved in regulating multiple metabolic pathways in cells and organisms. The role of SIRT5 in cancer is currently unclear, and a comprehensive systematic pan-cancer analysis is required to explore its value in diagnosis, prognosis, and immune function. METHODS: We investigated the role of SIRT5 in tumorigenesis, diagnosis, prognosis, metabolic pathways, the immune microenvironment, and pan-cancer therapeutic response. Moreover, we explored chemicals affecting the expression of SIRT5 and computed the relationship between SIRT5 and drug sensitivity. Finally, the role of SIRT5 in melanoma was analyzed using a series of experiments in vitro and in vivo. RESULTS: We found that SIRT5 is differentially expressed and shows early diagnostic value in various tumors and that somatic cell copy number alterations and DNA methylation contribute to its aberrant expression. SIRT5 expression correlates with clinical features. Besides, it is negatively (positively) correlated with several metabolic pathways and positively (negatively) correlated with several important metastasis-related and immune-related pathways. High SIRT5 expression predicts poor (or good) prognosis in various tumors and can affect drug sensitivity. We also demonstrated that SIRT5 expression significantly correlates with immunomodulator-associated molecules, lymphocyte subpopulation infiltration, and immunotherapeutic response biomarkers. In addition, we showed that SIRT5 is differentially expressed in immunotherapy cohorts. In addition, we explored various chemicals that may affect SIRT5 expression. In conclusion, we demonstrated that SIRT5 is a key pathogenic gene that promotes melanoma progression. CONCLUSION: Our study provides a systematic analysis of SIRT5 and its regulatory genes. SIRT5 has excellent diagnostic and prognostic capabilities for many cancers. This may remodel the tumor microenvironment. The potential of SIRT5-based cancer therapies is emphasized and helps predict the response to immunotherapy.


Assuntos
Melanoma , Sirtuínas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Imunoterapia , Biomarcadores , Carcinogênese , Metilação de DNA , Microambiente Tumoral , Sirtuínas/genética
9.
New Phytol ; 242(3): 1257-1274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481385

RESUMO

Plant pathogenic fungi elaborate numerous detoxification strategies to suppress host reactive oxygen species (ROS), but their coordination is not well-understood. Here, we show that Sirt5-mediated protein desuccinylation in Magnaporthe oryzae is central to host ROS detoxification. SIRT5 encodes a desuccinylase important for virulence via adaptation to host oxidative stress. Quantitative proteomics analysis identified a large number of succinylated proteins targeted by Sirt5, most of which were mitochondrial proteins involved in oxidative phosphorylation, TCA cycle, and fatty acid oxidation. Deletion of SIRT5 resulted in hypersuccinylation of detoxification-related enzymes, and significant reduction in NADPH : NADP+ and GSH : GSSG ratios, disrupting redox balance and impeding invasive growth. Sirt5 desuccinylated thioredoxin Trx2 and glutathione peroxidase Hyr1 to activate their enzyme activity, likely by affecting proper folding. Altogether, this work demonstrates the importance of Sirt5-mediated desuccinylation in controlling fungal process required for detoxifying host ROS during M. oryzae infection.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Espécies Reativas de Oxigênio/metabolismo , Lisina/metabolismo , Estresse Oxidativo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
10.
BMC Cancer ; 24(1): 386, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532359

RESUMO

Chordoma is a relatively rare and locally aggressive malignant tumor. Sirtuin (SIRT)5 plays pivotal roles in various tumors, but the role of SIRT5 in chordoma has not been found. This study was performed to investigate the regulatory effects of SIRT5 on cell proliferation, migration, and invasion and the underlying mechanism in chordoma. A xenograft tumor mouse model was established to assess tumor growth. Reverse transcription-quantitative polymerase chain reaction was used to analyze the mRNA levels of SIRT5 and c-myc. The effects of SIRT5 and c-myc on cell proliferation, migration, and invasion of chordoma cells were detected by cell counting kit-8, colony formation, and Transwell assays. The interaction between SIRT5 and c-myc was evaluated by co-immunoprecipitation (IP) assay. The succinylation of c-myc was analyzed by IP and Western blot. The results showed that SIRT5 expression was upregulated in chordoma tissues and cells. SIRT5 interacted with c-myc to inhibit the succinylation of c-myc at K369 site in human embryonic kidney (HEK)-293T cells. Silencing of SIRT5 suppressed the cell proliferation, migration, and invasion of chordoma cells, while the results were reversed after c-myc overexpression. Moreover, silencing SIRT5 suppressed tumor growth in mice. These findings suggested that SIRT5 promoted the malignant advancement of chordoma by regulating the desuccinylation of c-myc.


Assuntos
Cordoma , Sirtuínas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Sirtuínas/genética , Sirtuínas/metabolismo
11.
Neurochem Res ; 49(4): 998-1007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170384

RESUMO

This work aimed to study the role and mechanism of SIRT5 regulation of ferroptosis in cerebral ischemia-reperfusion (I/R) injury. A model of middle cerebral artery occlusion in rats was prepared using the method of thread occlusion. The ferroptosis inhibitor was injected intraperitoneally while the SIRT5 interfering lentivirus were injected into the brain, and neurological disorders were scored in the rats. TTC staining was used to detect infarct volume, and immunohistochemistry was used to detect the expression of SIRT5 in tissues. Rat hippocampal neuronal cells H19-7 were transduced with SIRT5 interfering lentivirus and ferroptosis was induced using erastin. The CCK8 detection kit was used to detect cell viability. Commercial kits were used to detect levels of iron ions, ROS, MDA, SOD, and inflammatory factor (TNF-α and IL-6) in brain tissue or cell supernatant. Western blot was used to detect the expression changes of ferroptosis related proteins GPX4, Nrf2, and HO-1 in tissues or cells. Compared with the sham group, the MCAO model group showed higher levels of neurological impairment score, increased cerebral infarction volume, iron ions, inflammatory factors, and oxidative stress levels in rats. Compared with the MCAO group, the MCAO + fer-1 group exhibited lower levels of neurological impairment scores, cerebral infarction volume, decreased iron ions, inflammatory factors, and oxidative stress levels in rats. Meanwhile, compared with the MCAO + DMSO/LV-shRNA group, the MCAO + fer-1/LV-shSIRT5 group showed a significant decrease in neurological impairment scores, cerebral infarction volume, iron ions, inflammatory factors, and oxidative stress levels in rats. In vitro experiments have found that LV-shSIRT5 can prevent erastin-induced cell ferroptosis. In summary, SIRT5 regulates ferroptosis through the Nrf2/HO-1 signaling axis to participate in ischemia-reperfusion injury in ischemic stroke.


Assuntos
Isquemia Encefálica , Ferroptose , AVC Isquêmico , Traumatismo por Reperfusão , Sirtuínas , Ratos , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/metabolismo , Íons , Ferro , Infarto Cerebral , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo
12.
EMBO Rep ; 23(9): e54391, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35770730

RESUMO

Macrophage polarization determines the production of pro- or anti-inflammatory cytokines in response to various bacterial and virus infections. Here, we report that pro-inflammatory macrophage polarization induced by lipopolysaccharide (LPS) skews the TRIM21-SIRT5 interplay toward TRIM21 activation and SIRT5 degradation, resulting in an enhancement of interleukin (IL)-1ß production in vitro and in vivo. Mechanistically, LPS challenge enhances the interaction between TRIM21 and SIRT5 to promote SIRT5 ubiquitination and degradation, while reducing the binding of SIRT5 to HAUSP, a deubiquitinating enzyme that stabilizes SIRT5. In a feedback loop, SIRT5 degradation sustains the acetylation of TRIM21 at Lys351, thereby increasing its E3 ligase activity in LPS-activated macrophages. Thus, we identify a functional balance between TRIM21 and SIRT5 that is tilted toward SIRT5 suppression in response to LPS stimulation, thereby enhancing IL-1ß production during inflammation.


Assuntos
Colite , Interleucina-1beta , Ribonucleoproteínas , Sirtuínas , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Ubiquitinação
13.
Cell Biol Toxicol ; 40(1): 66, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110260

RESUMO

OBJECTIVE: Colorectal cancer progression involves complex cellular mechanisms. This study examines the effects of Lactobacillus plantarum-derived extracellular vesicles (LEVs) on the SIRT5/p53 axis, focusing on glycolytic metabolic reprogramming and abnormal proliferation in intestinal epithelial cells. METHODS: LEVs were isolated from Lactobacillus plantarum and incubated with Caco-2 cells. Differential gene expression was analyzed through RNA sequencing and compared with TCGA-COAD data. Key target genes and pathways were identified using PPI network and pathway enrichment analysis. Various assays, including RT-qPCR, EdU staining, colony formation, flow cytometry, and Western blotting, were used to assess gene expression, cell proliferation, and metabolic changes. Co-immunoprecipitation confirmed the interaction between SIRT5 and p53, and animal models were employed to validate in vivo effects. RESULTS: Bioinformatics analysis indicated the SIRT5/p53 axis as a critical pathway in LEVs' modulation of colorectal cancer. LEVs were found to inhibit colorectal cancer cell proliferation and glycolytic metabolism by downregulating SIRT5, influencing p53 desuccinylation. In vivo, LEVs regulated this axis, reducing tumor formation in mice. Clinical sample analysis showed that SIRT5 and p53 succinylation levels correlated with patient prognosis. CONCLUSION: Lactobacillus-derived extracellular vesicles play a pivotal role in suppressing colonic tumor formation by modulating the SIRT5/p53 axis. This results in decreased glycolytic metabolic reprogramming and reduced proliferation in intestinal epithelial cells.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Vesículas Extracelulares , Glicólise , Sirtuínas , Proteína Supressora de Tumor p53 , Sirtuínas/metabolismo , Sirtuínas/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Animais , Células CACO-2 , Camundongos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus plantarum/metabolismo , Camundongos Nus , Camundongos Endogâmicos BALB C
14.
Clin Exp Pharmacol Physiol ; 51(9): e13909, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038854

RESUMO

Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4'-O-ß-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.


Assuntos
Quinases Relacionadas a NIMA , Podócitos , Sirtuínas , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Quinases Relacionadas a NIMA/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glucosídeos/farmacologia , Linhagem Celular
15.
Clin Exp Hypertens ; 46(1): 2358030, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38785262

RESUMO

PURPOSE: Hypertensive disorder complicating pregnancy (HDCP) is a serious clinical disorder syndrome during pregnancy. This study aims at finding novel targets for HDCP therapy. METHODS: HDCP-related mRNAs were firstly screened out and subjected to gene enrichment analysis. We chose protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) as the research object. Thirty-nine HDCP patients at 32 to 40 weeks of gestation were selected as the HDCP group, and 39 normal controls who received cesarean section delivery at 37-42 weeks of pregnancy were enrolled in this study. Chorionic villi samples were collected within 30 min of delivery. The apoptosis of isolated placental trophoblasts was monitored to investigate the regulatory role of PRKAA2. RESULTS: PRKAA2 expression was further proven to be enhanced in the placental tissues of HDCP patients compared with that of normal puerpera. Subsequently, the results of flow cytometry analysis and western blot indicated that PRKAA2 overexpression accelerated primary placental cell apoptosis, while its knockdown attenuated cell apoptosis. Mechanistically, we determined that the level of PRKAA2 succinylation was elevated in the placental tissue of HDCP patients. Through in vitro succinylation assay and mutagenesis, we confirmed that sirtuin 5 (SIRT5) interacts with PRKAA2 at K69 and K260 to induce PRKAA2 desuccinylation. SIRT5 regulated primary HDCP cell apoptosis through PRKAA2. Finally, the animal study revealed that PRKAA2 elevates the systolic blood pressure of HDCP rat model. CONCLUSION: Our findings indicated that SIRT5-mediated PRKAA2 succinylation modulates placental cell apoptosis in HDCP, suggesting that PRKAA2 is a potential therapeutic target for HDCP treatment.


Assuntos
Apoptose , Sirtuínas , Trofoblastos , Humanos , Feminino , Gravidez , Trofoblastos/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Ratos , Adulto , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/genética , Placenta/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-39145876

RESUMO

PURPOSE: Preeclampsia (PE) is a pregnancy-specific syndrome with increasing maternal and perinatal morbidity and mortality. Succinylation, a post-translational modification event, has been found in various diseases. However, the role of succinylation in PE has not been explored. This study aimed to investigate the effect of succinylation on PE and the underlying mechanisms. METHODS: Thirty-two PE patients and 32 normal pregnancy volunteers were recruited. Human extravasated trophoblast cells (HTR-8/SVneo) were used in in vitro study. RT-qPCR was performed to detect the expression of succinylation-related mRNAs. The cell proliferation, invasion, and migration were assessed using cell counting kit-8, ethynyldeoxyuridine, transwell, and wound healing assays. Co-immunoprecipitation and dual-luciferase reporter assays were performed to analyze the interaction between sirtuin (SIRT)5 and homeobox box 3 (HOXB3). RESULTS: SIRT5 was increased in the placental tissues of PE patients. SIRT5 inhibition increased cell proliferation, invasion, and migration in HTR-8/SVneo cells. Mechanistic investigations indicated that HOXB3 was a downstream regulatory target of SIRT5-mediated desuccinylation. Rescue experiments further verified that silencing of HOXB3 inhibited cell proliferation, invasion, and migration. Additionally, HOXB3 deficiency reversed the activation of the Notch and ß-catenin signaling pathway induced by SIRT5 inhibition. CONCLUSION: SIRT5 inhibited the trophoblast cell proliferation, invasion, and migration to promote PE through suppressing Notch and ß-catenin signaling pathway activation via desuccinylating HOXB3.

17.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447978

RESUMO

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Assuntos
Miócitos Cardíacos , Quercetina , Sirtuínas , Quercetina/farmacologia , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Camundongos , Sirtuínas/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos
18.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000044

RESUMO

Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.


Assuntos
Nefropatias , Rim , Mitocôndrias , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , Mitocôndrias/metabolismo , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396635

RESUMO

Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.


Assuntos
Flavonoides , Sirtuínas , Humanos , Flavonoides/farmacologia , Histonas/metabolismo , Antioxidantes , Sirtuínas/metabolismo , Transdução de Sinais
20.
J Biol Chem ; 298(4): 101723, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157847

RESUMO

A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.


Assuntos
Glutaril-CoA Desidrogenase , Lisina , Sirtuínas , Animais , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Camundongos , Oxirredução , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA