Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002797

RESUMO

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Longevidade/genética , Sirtuínas/metabolismo , Sequência de Aminoácidos , Animais , Peso Corporal , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Evolução Molecular , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Masculino , Mutagênese , Filogenia , Roedores/classificação , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Raios Ultravioleta
2.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208627

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acil Coenzima A/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Ácidos Graxos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Citoplasma/metabolismo
3.
Physiol Rev ; 100(1): 145-169, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437090

RESUMO

Mammalian sirtuins have emerged in recent years as critical modulators of multiple biological processes, regulating cellular metabolism, DNA repair, gene expression, and mitochondrial biology. As such, they evolved to play key roles in organismal homeostasis, and defects in these proteins have been linked to a plethora of diseases, including cancer, neurodegeneration, and aging. In this review, we describe the multiple roles of SIRT6, a chromatin deacylase with unique and important functions in maintaining cellular homeostasis. We attempt to provide a framework for such different functions, for the ability of SIRT6 to interconnect chromatin dynamics with metabolism and DNA repair, and the open questions the field will face in the future, particularly in the context of putative therapeutic opportunities.


Assuntos
Cromatina/metabolismo , Sirtuínas/metabolismo , Animais , DNA/metabolismo , Reparo do DNA , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Neoplasias/metabolismo
4.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31399344

RESUMO

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Sirtuínas/metabolismo , Elongação da Transcrição Genética , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Deleção de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/genética , Sirtuínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
6.
EMBO J ; 41(21): e110393, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215696

RESUMO

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Assuntos
Lamina Tipo A , Sirtuínas , Idoso de 80 Anos ou mais , Humanos , Centenários , Alelos , Instabilidade Genômica
7.
EMBO Rep ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866979

RESUMO

As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.

8.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332150

RESUMO

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Sirtuínas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo
9.
Genes Dev ; 32(5-6): 373-388, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555651

RESUMO

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.


Assuntos
Mutação/genética , Sirtuínas/genética , Animais , Diferenciação Celular/genética , Corpos Embrioides , Células-Tronco Embrionárias , Morte Fetal , Expressão Gênica/genética , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
10.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659223

RESUMO

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Glaucoma , Nervo Óptico , Células Ganglionares da Retina , Sirtuínas , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patologia , Glaucoma/etiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Envelhecimento/metabolismo , Envelhecimento/genética , Pressão Intraocular , Humanos , Axônios/metabolismo , Axônios/patologia , Camundongos Knockout , Degeneração Neural/metabolismo
11.
Cell Mol Life Sci ; 81(1): 69, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294557

RESUMO

Fibrosis is a typical aging-related pathological process involving almost all organs, including the heart, kidney, liver, lung, and skin. Fibrogenesis is a highly orchestrated process defined by sequences of cellular response and molecular signals mechanisms underlying the disease. In pathophysiologic conditions associated with organ fibrosis, a variety of injurious stimuli such as metabolic disorders, epigenetic changes, and aging may induce the progression of fibrosis. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. In this review, we outline our current understanding of common principles of fibrogenic mechanisms and the functional role of SIRT3/6 in aging-related fibrosis. In addition, sequences of novel protective strategies have been identified directly or indirectly according to these mechanisms. Here, we highlight the role and biological function of SIRT3/6 focus on aging fibrosis, as well as their inhibitors and activators as novel preventative or therapeutic interventions for aging-related tissue fibrosis.


Assuntos
Sirtuína 3 , Sirtuínas , Humanos , Fígado , Fibrose
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091469

RESUMO

Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.


Assuntos
Longevidade/genética , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Histona Desacetilases/economia , Histona Desacetilases/metabolismo , Masculino , Sirtuínas/genética
13.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894630

RESUMO

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Assuntos
Berberina , Proteína Forkhead Box O3 , Hipóxia , Transdução de Sinais , Sirtuínas , Berberina/farmacologia , Berberina/uso terapêutico , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Camundongos , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Modelos Animais de Doenças
14.
Biochem Biophys Res Commun ; 730: 150387, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002201

RESUMO

Uvaol (UV), a pentacyclic triterpene found in olives and virgin olive oil, is known for its anti-inflammatory and antioxidant effects in various disease models. While olive oil is reported to reduce obesity and insulin resistance, the specific impact of UV on liver lipid metabolism and its molecular mechanisms are not fully understood. In this study, hepatic lipid accumulation was measured using oil red O staining, and protein expression levels in liver cells were assessed via Western blot analysis. Apoptosis was evaluated through cell viability and caspase 3 activity assays. UV treatment reduced lipid accumulation, fatty acid uptake, apoptosis, and ER stress in palmitate-treated liver cells. Additionally, UV enhanced fatty acid oxidation. Mechanistically, increased SIRT6 expression and autophagy were observed in UV-treated cells. SIRT6-targeted siRNA or 3-methyladenine blocked the effects of UV in hyperlipidemic cells. In conclusion, UV improves SIRT6/autophagy signaling, reducing lipid deposition and apoptosis in liver cells under high lipid conditions. This in vitro study provides strong evidence for potential therapeutic strategies for hepatic steatosis.

15.
Biochem Biophys Res Commun ; 726: 150235, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38908345

RESUMO

BACKGROUND: Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS: We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS: Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1ß, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS: SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.


Assuntos
Camundongos Knockout , Sirtuínas , Cicatrização , Animais , Cicatrização/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/deficiência , Camundongos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Masculino
16.
Biochem Biophys Res Commun ; 691: 149293, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38016337

RESUMO

CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.


Assuntos
Monócitos , Sirtuínas , Humanos , Monócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adesão Celular , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Sirtuínas/metabolismo
17.
Biochem Biophys Res Commun ; 694: 149407, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38154209

RESUMO

Interleukin-38 (IL-38), a member of the IL-1 family, is known for its anti-inflammatory properties mediated through ligand signaling in various disease models. It plays a significant role in atherosclerosis development, forming a theoretical basis for therapeutic strategies. However, the direct effects of IL-38 on atherogenic responses in the vascular endothelium and monocytes remain unclear. In this investigation, IL-38 treatment reduced THP-1 monocyte adhesion to HUVECs, decreased the expression of vascular adhesion molecules, and mitigated inflammation in the presence of palmitate. IL-38 treatment upregulated SIRT6 expression and enhanced autophagy markers such as LC3 conversion and p62 degradation. The effects of IL-38 were nullified by siRNA-mediated suppression of SIRT6 or heme oxygenase-1 (HO-1) in HUVECs and palmitate-treated THP-1 cells. These findings reveal that IL-38 mitigates inflammation through the SIRT6/HO-1 pathway, offering a potential therapeutic approach for addressing obesity-related atherosclerosis.


Assuntos
Aterosclerose , Sirtuínas , Humanos , Aterosclerose/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Interleucinas , Obesidade/complicações , Palmitatos , Sirtuínas/genética , Sirtuínas/metabolismo
18.
J Bioenerg Biomembr ; 56(3): 297-309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602631

RESUMO

Ferroptosis of the retinal pigment epithelial (RPE) cells leads to retinal neuron injury and even visual loss. Our study aims to investigate the role of the SET domain with lysine methyltransferase 7/9 (SET7/9) in regulating high glucose (HG)-induced ferroptosis in RPE cells. The cell model was established by HG treatment. The levels of SET7/9 and Sirtuin 6 (SIRT6) were inhibited and Runt-related transcription factor 1 (RUNX1) was overexpressed through cell transfection, and then their levels in ARPE-19 cells were detected. Cell viability and apoptosis was detected. The levels of reactive oxygen species, malondialdehyde, glutathione, ferrous ion, glutathione peroxidase 4, and acyl-CoA synthetase long-chain family member 4 were detected. SET7/9 and trimethylation of histone H3 at lysine 4 (H3K4me3) levels in the RUNX1 promoter region and RUNX1 level in the SIRT6 promoter region were measured. The relationship between RUNX1 and SIRT6 was verified. SET7/9 and RUNX1 were highly expressed while SIRT6 was poorly expressed in HG-induced ARPE-19 cells. SET7/9 inhibition increased cell viability and inhibited cell apoptosis and ferroptosis. Mechanistically, SET7/9 increased H3K4me3 on the RUNX1 promoter to promote RUNX1, and RUNX1 repressed SIRT6 expression. Overexpression of RUNX1 or silencing SIRT6 partially reversed the inhibitory effect of SET7/9 silencing on HG-induced ferroptosis. In conclusion, SET7/9 promoted ferroptosis of RPE cells through the SIRT6/RUNX1 pathway.


Assuntos
Ferroptose , Glucose , Histona-Lisina N-Metiltransferase , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Glucose/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Epigênese Genética , Histonas/metabolismo , Metilação , Linhagem Celular , Células Epiteliais/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética
19.
Arch Biochem Biophys ; 755: 109986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582273

RESUMO

Sunitinib (SUN) is a chemotherapeutic agent clinically approved for treatment of metastatic renal carcinoma. Despite its remarkable benefits, various renal toxicities have been reported that limit its clinical uses. Oleuropein (OLE) is the main polyphenolic constituent of olive tree and mediates the majority of its valuable pharmacological activities. The current study examined the probable renoprotective effects of OLE against SUN-induced nephrotoxicity. Adult male albino rats were co-treated by SUN (25 mg/kg, 3 times/week, PO) with either a drug vehicle or OLE (60 mg/kg/day, daily, PO) for four weeks. A control group comprising of age-matched rats was used. Four weeks later, blood specimens were collected to assess kidney functions. Kidneys were harvested for biochemical and histopathological analyses. Administration of SUN induced kidney dysfunction, along with marked rises in endothelin-1 (ET-1) and monocyte chemotactic protein-1 (MCP-1) levels in renal tissues. Histological abnormalities were also detected in kidneys of SUN-treated rats including glomerular and tubular interstitial congestion along with interstitial fibrosis. On molecular levels, there was a decline in renal SIRT6 expression along with significant up-regulation of Notch-1, NLRP-3, interleukin -1ß (IL-1ß) and cleaved caspsase-3. All these changes were almost alleviated by OLE co-treatment. These findings suggest the implication of SIRT6/Notch-1/NLRP3/IL-1ß axis in the pathogenesis of SUN-induced nephrotoxicity and highlight OLE as a prospective renoprotective agent during SUN chemotherapy to halt its renal toxicity likely through promotion of SIRT6 and suppression of Notch-1/NLRP3/IL-1ß signaling pathway.

20.
Cell Biol Int ; 48(6): 795-807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436106

RESUMO

Mitochondrial dysfunction and myocardial remodeling have been reported to be the main underlying molecular mechanisms of doxorubicin-induced cardiotoxicity. SIRT6 is a nicotinamide adenine dinucleotide-dependent enzyme that plays a vital role in cardiac protection against various stresses. Moreover, previous studies have demonstrated that FSTL1 could alleviate doxorubicin-induced cardiotoxicity by inhibiting autophagy. The present study investigated the probable mechanisms of FSTL1 on doxorubicin-induced cardiotoxicity in vivo and in vitro. We confirmed that FSTL1 exerted a pivotal protective role on cardiac tissue in vivo and on doxorubicin-induced cell injury in vitro. Furthermore, FSTL1 can alleviate doxorubicin-induced mitochondrial dysfunction by inhibiting autophagy and apoptosis. Further studies demonstrated that FSTL1 can activate SIRT6 signaling by restoring the SIRT6 protein expression in doxorubicin-induced myocardial injury. SIRT6 activation elevated the protein expression of Nrf2 in doxorubicin-induced H9C2 injury. Treatment with the Nrf2 inhibitor ML385 partially antagonized the cardioprotective role of SIRT6 on doxorubicin-induced autophagy or apoptosis. These results suggested that the protective mechanism of FSTL1 on doxorubicin-induced cardiotoxicity may be related with the inhibition of autophagy and apoptosis, partly through the activation of SIRT6/Nrf2.


Assuntos
Apoptose , Autofagia , Cardiotoxicidade , Doxorrubicina , Proteínas Relacionadas à Folistatina , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Sirtuínas , Sirtuínas/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Ratos , Apoptose/efeitos dos fármacos , Masculino , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Folistatina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA