Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.322
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(6): 1212-1227.e14, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169215

RESUMO

The paternal genome undergoes a massive exchange of histone with protamine for compaction into sperm during spermiogenesis. Upon fertilization, this process is potently reversed, which is essential for parental genome reprogramming and subsequent activation; however, it remains poorly understood how this fundamental process is initiated and regulated. Here, we report that the previously characterized splicing kinase SRPK1 initiates this life-beginning event by catalyzing site-specific phosphorylation of protamine, thereby triggering protamine-to-histone exchange in the fertilized oocyte. Interestingly, protamine undergoes a DNA-dependent phase transition to gel-like condensates and SRPK1-mediated phosphorylation likely helps open up such structures to enhance protamine dismissal by nucleoplasmin (NPM2) and enable the recruitment of HIRA for H3.3 deposition. Remarkably, genome-wide assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis reveals that selective chromatin accessibility in both sperm and MII oocytes is largely erased in early pronuclei in a protamine phosphorylation-dependent manner, suggesting that SRPK1-catalyzed phosphorylation initiates a highly synchronized reorganization program in both parental genomes.


Assuntos
Cromatina/metabolismo , Protaminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Fertilização/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Oócitos/fisiologia , Fosforilação , Protamina Quinase/genética , Protamina Quinase/metabolismo , Protaminas/genética , Proteínas Serina-Treonina Quinases/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia , Espermatozoides/metabolismo , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
2.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220461

RESUMO

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Assuntos
HDL-Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Células 3T3 , Animais , Transporte Biológico/fisiologia , Antígenos CD36/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
3.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153836

RESUMO

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Assuntos
Regulação da Expressão Gênica , Lipogênese , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
4.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059760

RESUMO

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Répteis/genética , Animais , Evolução Biológica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Répteis/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
5.
Mol Cell ; 80(4): 648-665.e9, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33176162

RESUMO

The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2ß using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2ß-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2ß-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.


Assuntos
Neoplasias da Mama/patologia , Diferenciação Celular , Éxons , Síndromes Mielodisplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas , Fatores de Processamento de Serina-Arginina/genética , Células Tumorais Cultivadas
6.
Proc Natl Acad Sci U S A ; 121(21): e2322974121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743621

RESUMO

SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de Serina-Arginina , Spliceossomos , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Células HeLa , Ligação Proteica , Precursores de RNA/metabolismo , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Spliceossomos/metabolismo
7.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971700

RESUMO

Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However, the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF) Arabidopsis gene encodes an SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human SART1 and yeast Snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and to repress stress response, cell differentiation and cell death pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Splicing de RNA/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
RNA ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251328

RESUMO

The CLK1 kinase phosphorylates SR proteins to modulate their splicing regulatory activity. Skipping of alternative exon 4 on the CLK1 pre-mRNA produces a CLK1 variant lacking the catalytic site. Here, we aimed to understand how various SR proteins integrate into the regulatory program that controls CLK1 exon 4 splicing. Previously, we observed that the depletion of SRSF10 promoted the inclusion of CLK1 exon 4. Using expression of tagged proteins and CRISPR/Cas9-mediated knockouts in HCT116 cells, we now identify TRA2b, TRA2a, SRSF4, SRSF5, SRSF7, SRSF8 and SRSF9 as activators of exon 4 inclusion. In contrast, SRSF3, SRSF10 and SRSF12 elicit exon 4 skipping. Using CRISPR/dCas13Rx and RNA immunoprecipitation assays, we map an enhancer in exon 4 interacting with TRA2b. Notably, CLK1 kinase inhibitors antagonized the repressor activity of HA-SRSF10, HA-SRSF12 and HA-SRSF3. Our results suggest that CLK1 exon 4 inclusion is determined primarily by a balance between the activities of TRA2 proteins and CLK-phosphorylated SRSF3. CLK-phosphorylated SRSF10 and SRSF12 would interact with TRA2 proteins to prevent their enhancer activity, allowing SRSF3 to enforce exon 4 skipping more efficiently. Our study provides insight into the complex regulatory network controlling the alternative splicing of CLK1, which uses CLK1-mediated phosphorylation of SR proteins to regulate the inclusion of catalytic exon 4 in CLK1 transcripts.

9.
Mol Cell ; 69(1): 62-74.e4, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276085

RESUMO

Alternative mRNA processing is a critical mechanism for proteome expansion and gene regulation in higher eukaryotes. The SR family proteins play important roles in splicing regulation. Intriguingly, mammalian genomes encode many poorly characterized SR-like proteins, including subunits of the mRNA 3'-processing factor CFIm, CFIm68 and CFIm59. Here we demonstrate that CFIm functions as an enhancer-dependent activator of mRNA 3' processing. CFIm regulates global alternative polyadenylation (APA) by specifically binding and activating enhancer-containing poly(A) sites (PASs). Importantly, the CFIm activator functions are mediated by the arginine-serine repeat (RS) domains of CFIm68/59, which bind specifically to an RS-like region in the CPSF subunit Fip1, and this interaction is inhibited by CFIm68/59 hyper-phosphorylation. The remarkable functional similarities between CFIm and SR proteins suggest that interactions between RS-like domains in regulatory and core factors may provide a common activation mechanism for mRNA 3' processing, splicing, and potentially other steps in RNA metabolism.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Poliadenilação , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Fosforilação , Poli A/metabolismo , Domínios Proteicos/genética , Proteínas de Ligação a RNA/metabolismo , Células Sf9 , Spodoptera
10.
Proc Natl Acad Sci U S A ; 120(4): e2210611120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649412

RESUMO

Growing reliance on animal and plant domestication in the Near East and beyond during the Pre-Pottery Neolithic B (PPNB) (the ninth to eighth millennium BC) has often been associated with a "revolutionary" social transformation from mobility toward more sedentary lifestyles. We are able to yield nuanced insights into the process of the Neolithization in the Near East based on a bioarchaeological approach integrating isotopic and archaeogenetic analyses on the bone remains recovered from Nevali Çori, a site occupied from the early PPNB in Turkey where some of the earliest evidence of animal and plant domestication emerged, and from Ba'ja, a typical late PPNB site in Jordan. In addition, we present the archaeological sequence of Nevali Çori together with newly generated radiocarbon dates. Our results are based on strontium (87Sr/86Sr), carbon, and oxygen (δ18O and δ13Ccarb) isotopic analyses conducted on 28 human and 29 animal individuals from the site of Nevali Çori. 87Sr/86Sr results indicate mobility and connection with the contemporaneous surrounding sites during the earlier PPNB prior to an apparent decline in this mobility at a time of growing reliance on domesticates. Genome-wide data from six human individuals from Nevali Çori and Ba'ja demonstrate a diverse gene pool at Nevali Çori that supports connectedness within the Fertile Crescent during the earlier phases of Neolithization and evidence of consanguineous union in the PPNB Ba'ja and the Iron Age Nevali Çori.


Assuntos
Carbono , Domesticação , Animais , Humanos , História Antiga , Turquia , Jordânia , Arqueologia , DNA
11.
J Biol Chem ; 300(1): 105501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016516

RESUMO

Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas , Poliadenilação , Ciclinas/metabolismo , Conformação Molecular , Humanos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química
12.
Plant J ; 119(1): 137-152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569053

RESUMO

Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.


Assuntos
Processamento Alternativo , Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Gossypium , Doenças das Plantas , Proteínas de Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Processamento Alternativo/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Imunidade Vegetal/genética , Verticillium
13.
Mol Microbiol ; 121(1): 40-52, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994189

RESUMO

Here, we employ coelution experiments and far-western blotting to identify stable interactions between the main components of the B. subtilis degradosome and the small proteins SR1P and SR7P. Our data indicate that B. subtilis has a degradosome comprising at least RNases Y and PnpA, enolase, phosphofructokinase, glycerol-3-phosphate dehydrogenase GapA, and helicase CshA that can be co-purified without cross-linking. All interactions were corroborated by far-western blotting with proteins purified from E. coli. Previously, we discovered that stress-induced SR7P binds enolase to enhance its interaction with and activity of enolase-bound RNase Y (RnY), while SR1P transcribed under gluconeogenic conditions interacts with GapA to stimulate its interaction with and the activity of RnjA (RnjA). We show that SR1P can directly bind RnjA, RnY, and PnpA independently of GapA, whereas SR7P only interacts with enolase. Northern blotting suggests that the degradation of individual RNAs in B. subtilis under gluconeogenic or stress conditions depends on either RnjA or RnY alone or on RnjA-SR1P, RnY-SR1P, or RnY-Eno. In vitro degradation assays with RnY or RnjA substrates corroborate the in vivo role of SR1P. Currently, it is unknown which substrate property is decisive for the utilization of one of the complexes.


Assuntos
Bacillus subtilis , Escherichia coli , Complexos Multienzimáticos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endorribonucleases/metabolismo , RNA Helicases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo
14.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973083

RESUMO

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

15.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604522

RESUMO

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Fase G2/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Fosforilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
16.
Mol Cell ; 67(3): 433-446.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28689656

RESUMO

The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal , Relógios Circadianos , Ritmo Circadiano , Proteína de Ligação a TATA-Box/metabolismo , Regiões 5' não Traduzidas , Animais , Linhagem Celular Tumoral , Éxons , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosforilação , Interferência de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Proteína de Ligação a TATA-Box/genética , Fatores de Tempo , Transfecção
17.
Biochem J ; 481(15): 999-1013, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39083035

RESUMO

Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.


Assuntos
Processamento Alternativo , Transcriptoma , Animais , Humanos , Temperatura , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Regulação da Expressão Gênica
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046046

RESUMO

Mammals rely on nonshivering thermogenesis (NST) from skeletal muscle so that cold temperatures can be tolerated. NST results from activity of the sarcoplasmic reticulum (SR) Ca2+ pump in skeletal muscle, but the mechanisms that regulate this activity are unknown. Here, we develop a single-fiber assay to investigate the role of Ca2+ leak through ryanodine receptor 1 (RyR1) to generate heat at the SR Ca2+ pump in resting muscle. By inhibiting a subpopulation of RyR1s in a single-fiber preparation via targeted delivery of ryanodine through transverse tubules, we achieve in-preparation isolation of RyR1 Ca2+ leak. This maneuver provided a critical increase in signal-to-noise of the SR-temperature-sensitive dye ER thermoyellow fluorescence signal from the fiber to allow detection of SR temperature changes as either RyR1 or SR Ca2+ pump activity was altered. We found that RyR1 Ca2+ leak raises cytosolic [Ca2+] in the local vicinity of the SR Ca2+ pump to amplify thermogenesis. Furthermore, gene-dose-dependent increases in RyR1 leak in RYR1 mutant mice result in progressive rises in leak-dependent heat, consistent with raised local [Ca2+] at the SR Ca2+ pump via RyR1 Ca2+ leak. We also show that basal RyR Ca2+ leak and the heat generated by the SR Ca2+ pump in the absence of RyR Ca2+ leak is greater in fibers from mice than from toads. The distinct function of RyRs and SR Ca2+ pump in endothermic mammals compared to ectothermic amphibians provides insights into the mechanisms by which mammalian skeletal muscle achieves thermogenesis at rest.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Descanso , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Termogênese , Animais , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Termogênese/genética
19.
Nano Lett ; 24(35): 10767-10775, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39172999

RESUMO

Low-power and fast artificial neural network devices represent the direction in developing analogue neural networks. Here, an ultralow power consumption (0.8 fJ) and rapid (100 ns) La0.1Bi0.9FeO3/La0.7Sr0.3MnO3 ferroelectric tunnel junction artificial synapse has been developed to emulate the biological neural networks. The visual memory and forgetting functionalities have been emulated based on long-term potentiation and depression with good linearity. Moreover, with a single device, logical operations of "AND" and "OR" are implemented, and an artificial neural network was constructed with a recognition accuracy of 96%. Especially for noisy data sets, the recognition speed is faster after preprocessing by the device in the present work. This sets the stage for highly reliable and repeatable unsupervised learning.

20.
Dev Biol ; 494: 1-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450333

RESUMO

Germ cell development requires interplay between factors that balance cell fate and division. Early in their development, germ cells in many organisms divide mitotically with incomplete cytokinesis. Key regulatory events then lead to the specification of mature gametes, marked by the switch to a meiotic cell cycle program. Though the regulation of germ cell proliferation and meiosis are well understood, how these events are coordinated during development remains incompletely described. Originally characterized in their role as nucleo-cytoplasmic shuttling proteins, ß-importins exhibit diverse functions during male and female gametogenesis. Here, we describe novel, distinct roles for the ß-importin, Transportin-Serine/Arginine rich (Tnpo-SR), as a regulator of the mitosis to meiosis transition in the Drosophila ovary. We find that Tnpo-SR is necessary for germline stem cell (GSC) establishment and self-renewal, likely by controlling the response of GSCs to bone morphogenetic proteins. Depletion of Tnpo-SR results in germ cell counting defects and loss of oocyte identity. We show that in the absence of Tnpo-SR, proteins typically suppressed in germ cells when they exit mitosis fail to be down-regulated, and oocyte-specific factors fail to accumulate. Together, these findings provide new insight into the balance between germ cell division and differentiation and identify novel roles for ß-importins in germ cell development.


Assuntos
Drosophila , Carioferinas , Animais , Feminino , Masculino , Arginina , beta Carioferinas , Diferenciação Celular , Células Germinativas , Meiose , Mitose , Oócitos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA