Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int Microbiol ; 25(3): 639-647, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35597864

RESUMO

In addition to the UPR pathway, yeast cells require components of the HOG pathway to respond to ER stress. In this work, we found that unphosphorylated Sln1 and Ssk1 are required to mount an appropriate response to Tn. We also found that the MAPKKKs Ssk2 participates in the Tn response, but its osmo-redundant protein Ssk22 does not. We also found that the Pbs2 docking sites for Ssk2 (RDS-I and KD) are partially dispensable when mutated separately; however, the prevention of Ssk2 binding to Pbs2, by the simultaneous mutation of RDS-I and KD, caused strong sensitivity to Tn. In agreement with the lack of Hog1 phosphorylation during Tn treatment, a moderate resistance to Tn is obtained when a Pbs2 version lacking its kinase activity is expressed; however, the presence of mutual Pbs2-Hog1 docking sites is essential for the Tn response. Finally, we detected that Tn induced a transcriptional activation of some components of the SLN1 branch. These results indicate that the Tn response requires a complex formed by the MAPK module and components of the SLN1 branch but not their canonical osmoregulatory activities.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Estresse do Retículo Endoplasmático , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/metabolismo , Tunicamicina/farmacologia
2.
Metab Eng ; 36: 68-79, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971668

RESUMO

The yeast Saccharomyces cerevisiae generally shows a low natural capability to utilize glycerol as the sole source of carbon, particularly when synthetic medium is used and complex supplements are omitted. Nevertheless, wild type isolates have been identified that show a moderate growth under these conditions. In the current study we made use of intraspecies diversity to identify targets suitable for reverse metabolic engineering of the non-growing laboratory strain CEN.PK113-1A. A genome-wide genetic mapping experiment using pooled-segregant whole-genome sequence analysis was conducted, and one major and several minor genetic loci were identified responsible for the superior glycerol growth phenotype of the previously selected S. cerevisiae strain CBS 6412-13A. Downscaling of the major locus by fine-mapping and reciprocal hemizygosity analysis allowed the parallel identification of two superior alleles (UBR2CBS 6412-13A and SSK1CBS 6412-13A). These alleles together with the previously identified GUT1CBS 6412-13A allele were used to replace the corresponding alleles in the strain CEN.PK113-1A. In this way, glycerol growth could be established reaching a maximum specific growth rate of 0.08h(-1). Further improvement to a maximum specific growth rate of 0.11h(-1) could be achieved by heterologous expression of the glycerol facilitator FPS1 from Cyberlindnera jadinii.


Assuntos
Mapeamento Cromossômico/métodos , Melhoramento Genético/métodos , Genoma Bacteriano/genética , Glicerol/metabolismo , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Glicerol/isolamento & purificação , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Fungi (Basel) ; 8(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35330262

RESUMO

Ssk1, a response regulator of the two-component signaling system, plays an important role in the cellular response to hyperosmotic stress in fungi. Herein, an ortholog of ssk1 (Aossk1) was characterized in the nematode-trapping fungus Arthrobotrys oligospora using gene disruption and multi-phenotypic comparison. The deletion of Aossk1 resulted in defective growth, deformed and swollen hyphal cells, an increased hyphal septum, and a shrunken nucleus. Compared to the wild-type (WT) strain, the number of autophagosomes and lipid droplets in the hyphal cells of the ΔAossk1 mutant decreased, whereas their volumes considerably increased. Aossk1 disruption caused a 95% reduction in conidial yield and remarkable defects in tolerance to osmotic and oxidative stress. Meanwhile, the transcript levels of several sporulation-related genes were significantly decreased in the ΔAossk1 mutant compared to the WT strain, including abaA, brlA, flbC, fluG, and rodA. Moreover, the loss of Aossk1 resulted in a remarkable increase in trap formation and predation efficiency. In addition, many metabolites were markedly downregulated in the ΔAossk1 mutant compared to the WT strain. Our results highlight that AoSsk1 is a crucial regulator of asexual development, stress responses, the secondary metabolism, and pathogenicity, and can be useful in probing the regulatory mechanism underlying the trap formation and lifestyle switching of nematode-trapping fungi.

4.
mSphere ; 5(5)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055262

RESUMO

Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Parede Celular/fisiologia , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Adaptação Fisiológica , Candidíase/microbiologia , Farmacorresistência Fúngica Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Virulência
5.
Protein Sci ; 28(12): 2099-2111, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642125

RESUMO

Two-component signaling systems are the primary means by which bacteria, archaea, and certain plants and fungi react to their environments. The model yeast, Saccharomyces cerevisiae, uses the Sln1 signaling pathway to respond to hyperosmotic stress. This pathway contains a hybrid histidine kinase (Sln1) that autophosphorylates and transfers a phosphoryl group to its own receiver domain (R1). The phosphoryl group is then transferred to a histidine phosphotransfer protein (Ypd1) that finally passes it to the receiver domain (R2) of a downstream response regulator (Ssk1). Under normal conditions, Ssk1 is constitutively and preferentially phosphorylated in the phosphorelay. Upon detecting hyperosmotic stress, Ssk1 rapidly dephosphorylates and activates the high-osmolarity glycerol (HOG) pathway, initiating a response. Despite their distinct physiological roles, both Sln1 and Ssk1 bind to Ypd1 at a common docking site. Co-crystal structures of response regulators in complex with their phosphorelay partners are scarce, leaving many mechanistic and structural details uncharacterized for systems like the Sln1 pathway. In this work, we present the co-crystal structure of Ypd1 and a near wild-type variant of the receiver domain of Ssk1 (Ssk1-R2-W638A) at a resolution of 2.80 Å. Our structural analyses of Ypd1-receiver domain complexes, biochemical determination of binding affinities for Ssk1-R2 variants, in silico free energy estimates, and sequence comparisons reveal distinctive electrostatic properties of the Ypd1/Ssk1-R2-W638A complex that may provide insight into the regulation of the Sln1 pathway as a function of dynamic osmolyte concentration.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Cristalização , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Domínios Proteicos , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA