Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Br J Anaesth ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244479

RESUMO

BACKGROUND: Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to the genesis of neuropathic pain. SYNCRIP, an RNA-binding protein, is critical for the stabilisation of gene expression. Whether SYNCRIP participates in nerve injury-induced alterations in DRG gene expression and nociceptive hypersensitivity is unknown. METHODS: The expression and distribution of SYNCRIP in mouse DRG after chronic constriction injury (CCI) of the unilateral sciatic nerve were assessed. Effect of microinjection of Syncrip small interfering RNA into the ipsilateral L3 and L4 DRGs on the CCI-induced upregulation of chemokine (C-C motif) receptor 2 (CCR2) and nociceptive hypersensitivity were examined. Additionally, effects of microinjection of adeno-associated virus 5 expressing full length Syncrip mRNA (AAV5-Syncrip) on basal DRG CCR2 expression and nociceptive thresholds were observed. RESULTS: SYNCRIP is expressed predominantly in DRG neurones, where it co-exists with CCR2. Levels of Syncrip mRNA and SYNCRIP protein in injured DRG increased time-dependently on days 3-14 after CCI. Blocking this increase through microinjection of Syncrip small interfering RNA into injured DRG attenuated CCI-induced upregulation of DRG CCR2 and development and maintenance of nociceptive hypersensitivities. Mimicking this increase through DRG microinjection of AAV5-Syncrip elevated CCR2 expression in microinjected DRGs, enhanced the responses to mechanical, heat, and cold stimuli, and induced ongoing pain in naive mice. Mechanistically, SYNCRIP bound to 3-UTR of Ccr2 mRNA and stabilised its expression in DRG neurones. CONCLUSIONS: SYNCRIP contributes to the induction and maintenance of neuropathic pain likely through stabilising expression of CCR2 in injured DRG. SYNCRIP may be a potential target for treating this disorder.

2.
RNA ; 26(3): 290-305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907208

RESUMO

microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/química , Ribonucleosídeo Difosfato Redutase/genética
3.
Vet Res ; 52(1): 73, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034820

RESUMO

Porcine Parvovirus (PPV), a pathogen causing porcine reproductive disorders, encodes two capsid proteins (VP1 and VP2) and three nonstructural proteins (NS1, NS2 and SAT) in infected cells. The PPV NS2 mRNA is from NS1 mRNA after alternative splicing, yet the corresponding mechanism is unclear. In this study, we identified a PPV NS1 mRNA binding protein SYNCRIP, which belongs to the hnRNP family and has been identified to be involved in host pre-mRNA splicing by RNA-pulldown and mass spectrometry approaches. SYNCRIP was found to be significantly up-regulated by PPV infection in vivo and in vitro. We confirmed that it directly interacts with PPV NS1 mRNA and is co-localized at the cytoplasm in PPV-infected cells. Overexpression of SYNCRIP significantly reduced the NS1 mRNA and protein levels, whereas deletion of SYNCRIP significantly reduced NS2 mRNA and protein levels and the ratio of NS2 to NS1, and further impaired replication of the PPV. Furthermore, we found that SYNCRIP was able to bind the 3'-terminal site of NS1 mRNA to promote the cleavage of NS1 mRNA into NS2 mRNA. Taken together, the results presented here demonstrate that SYNCRIP is a critical molecule in the alternative splicing process of PPV mRNA, while revealing a novel function for this protein and providing a potential target of antiviral intervention for the control of porcine parvovirus disease.


Assuntos
DNA Viral/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Infecções por Parvoviridae/veterinária , Parvovirus Suíno/fisiologia , RNA Mensageiro/genética , Doenças dos Suínos/genética , Proteínas não Estruturais Virais/genética , Processamento Alternativo , Animais , Replicação do DNA , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Parvovirus Suíno/genética , RNA Mensageiro/metabolismo , Sus scrofa , Suínos , Doenças dos Suínos/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
RNA Biol ; 18(9): 1252-1264, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33030396

RESUMO

SYNCRIP, a member of the cellular heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins, regulates various aspects of neuronal development and plasticity. Although SYNCRIP has been identified as a component of cytoplasmic RNA granules in dendrites of mammalian neurons, only little is known about the specific SYNCRIP target mRNAs that mediate its effect on neuronal morphogenesis and function. Here, we present a comprehensive characterization of the cytoplasmic SYNCRIP mRNA interactome using iCLIP in primary rat cortical neurons. We identify hundreds of bona fide SYNCRIP target mRNAs, many of which encode for proteins involved in neurogenesis, neuronal migration and neurite outgrowth. From our analysis, the stabilization of mRNAs encoding for components of the microtubule network, such as doublecortin (Dcx), emerges as a novel mechanism of SYNCRIP function in addition to the previously reported control of actin dynamics. Furthermore, we found that SYNCRIP synergizes with pro-neural miRNAs, such as miR-9. Thus, SYNCRIP appears to promote early neuronal differentiation by a two-tier mechanism involving the stabilization of pro-neural mRNAs by direct 3'UTR interaction and the repression of anti-neural mRNAs in a complex with neuronal miRISC. Together, our findings provide a rationale for future studies investigating the function of SYNCRIP in mammalian brain development and disease.


Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Grânulos de Ribonucleoproteínas Citoplasmáticas/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Hipocampo/citologia , MicroRNAs/genética , Neurônios/citologia , Complexo de Inativação Induzido por RNA/genética , Ratos , Ratos Sprague-Dawley
5.
J Cell Mol Med ; 24(18): 10898-10912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32770626

RESUMO

A novel antisense lncRNA NT5E was identified in a previous microarray that was clearly up-regulated in pancreatic cancer (PC) tissues. However, its biological function remains unclear. Thus, we aimed to explore its function and clinical significance in PC. The lncNT5E expression was determined in PC specimens and cell lines. In vitro and in vivo studies detected the impact of lncNT5E depletion on PC cell proliferation, migration and invasion. Western blotting investigated the epithelial-mesenchymal transition (EMT) markers. The interaction between lncNT5E and the promoter region of SYNCRIP was detected by dual-luciferase reporter assay. The role of lncNT5E in modulating SYNCRIP was investigated in vitro. Our results showed that lncNT5E was significantly up-regulated in PC tissues and cell lines and associated with poor prognosis. LncNT5E depletion inhibited PC cell proliferation, migration, invasion and EMT in vitro and caused tumorigenesis arrest in vivo. Furthermore, SYNCRIP knockdown had effects similar to those of lncNT5E depletion. A significant positive relationship was observed between lncNT5E and SYNCRIP. Moreover, the dual-luciferase reporter assays indicated that lncNT5E depletion significantly inhibited SYNCRIP promoter activity. Importantly, the malignant phenotypes of lncNT5E depletion were rescued by overexpressing SYNCRIP. In conclusion, lncNT5E predicts poor prognosis and promotes PC progression by modulating SYNCRIP expression.


Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Adulto , Idoso , Animais , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Divisão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Genes Reporter , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas/genética , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , Modelos de Riscos Proporcionais , Interferência de RNA , RNA Antissenso/biossíntese , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/metabolismo
6.
Biochem Biophys Res Commun ; 522(4): 826-831, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31791586

RESUMO

It has remained a mystery why cells maintain ATP concentrations of 2-12 mM, much higher than required for its known functions, until ATP is decoded to act as a hydrotrope to non-specifically control protein homeostasis above 5 mM. Unexpectedly, our NMR studies further reveal that by specific binding, ATP also mediates liquid-liquid phase separation in a two-stage style and inhibits fibrillation of RRM domains of FUS and TDP-43, implying that ATP might have a second category of functions previously unknown. So can ATP also bind nucleic-acid-binding proteins without RRM fold? Here we characterized the interaction between ATP and SYNCRIP acidic domain (AcD), a non-canonical RNA-binding domain with no similarity to RRM fold in sequence and structure. The results reveal that ATP does bind AcD at physiologically-relevant concentrations with the affinity determinants generally underlying protein-nucleic acid interactions. Therefore, at concentrations above mM, ATP might bind most, if not all, nucleic-acid-binding proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
7.
Cell Biol Int ; 44(2): 424-432, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31535751

RESUMO

Most living organisms have physiological and behavioral circadian rhythms controlled by molecular clocks. In mammals, several core clock genes show self-perpetuating oscillation profiles of their messenger RNAs (mRNAs) and proteins through an auto-regulatory transcription-translation feedback loop (TTFL). As a critical component in the molecular clock system, Period 1 (Per1) contributes to the maintenance of circadian rhythm duration predominantly in peripheral clocks. Alterations in Per1 expression and oscillating patterns lead to the development of cancers as well as circadian rhythm abnormalities. In this study, we demonstrate that the phasic profile of Per1 protein was clearly disrupted in CRISPR/Cas-mediated Fubp1-deficient cells. Although Fubp1 does not show rhythmic expression, Fubp1 upregulates the mRNA and protein level of Syncrip, the main post-transcriptional regulator of Per1 protein oscillation. In addition to the diverse physiological functions of Fubp1, including cell-cycle regulation and cellular metabolic control, our results suggest new roles for Fubp1 in the molecular clock system.


Assuntos
Sistemas CRISPR-Cas , Ritmo Circadiano , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação da Expressão Gênica , Inativação Gênica , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Proteínas Circadianas Period/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Circadianas Period/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Cancer Cell ; 41(8): 1427-1449.e12, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478850

RESUMO

Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Mutagênese , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Cromossômicas não Histona , Ribonucleoproteínas Nucleares Heterogêneas , Citidina Desaminase , Antígenos de Histocompatibilidade Menor , Complexo Repressor Polycomb 1
9.
Acta Pharm Sin B ; 12(8): 3281-3297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967275

RESUMO

Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome. Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine (MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR, LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.

10.
Biol Open ; 9(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205310

RESUMO

During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila/genética , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Poliadenilação , RNA Mensageiro/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Proteínas de Drosophila/metabolismo , Imuno-Histoquímica , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA