Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(5): 73, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691196

RESUMO

Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.


Assuntos
Monitoramento Ambiental , Microplásticos , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Densidade Demográfica , Sudeste Asiático , Tailândia , Vietnã , Poluição Química da Água/estatística & dados numéricos , Plásticos/análise , Indonésia , Sedimentos Geológicos/química
2.
Mar Pollut Bull ; 174: 113302, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995884

RESUMO

Anthropogenic fibres are an emerging pollutant worldwide. The Can Gio mangrove area is located downstream of the Saigon River, and is characterised by high level of anthropogenic fibres originating from domestic and industrial textile and apparel manufacturing. In this area, biota is thus subjected to a high potential risk of anthropogenic fibre contamination. This study aims to characterise the accumulation of anthropogenic fibres in different tissues, i.e. gills, digestive systems, and remaining tissues, of white clams (Meretrix lyrata) cultivated in the Can Gio beach sand, during a seven-month sampling period. The results showed an average concentration of 3.6 ± 2.1 fibres individual-1 or 2.7 ± 2.4 fibres g-1 ww. Higher fibre accumulation was observed in remaining tissues than in gills and digestive systems, and no temporal variation was observed in all clam tissues. The intake of fibres by humans consuming clams was estimated to be 324 fibres inhabitant-1 yr-1.


Assuntos
Bivalves , Animais , Cidades , Humanos , Rios , Vietnã
3.
Environ Pollut ; 303: 119105, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35276252

RESUMO

Estuaries are considered as important sources of the global emission of greenhouse gases (GHGs). Urbanized estuaries often experience eutrophication under strong anthropogenic activities. Eutrophication can enhance phytoplankton abundance, leading to carbon dioxide (CO2) consumption in the water column. Only a few studies have evaluated the relationship between GHGs and eutrophication in estuaries. In this study, we assessed the concentrations and fluxes of CO2, methane (CH4) and nitrous oxide (N2O) in combination with a suite of biogeochemical variables in four sampling campaigns over two years in a highly urbanized tropical estuary in Southeast Asia (the Saigon River Estuary, Vietnam). The impact of eutrophication on GHGs was evaluated through several statistical methods and interpreted by biological processes. The average concentrations of CO2, CH4 and N2O at the Saigon River in 2019-2020 were 3174 ± 1725 µgC-CO2 L-1, 5.9 ± 16.8 µgC-CH4 L-1 and 3.0 ± 4.8 µgN-N2O L-1, respectively. Their concentrations were 13-18 times, 52-332 times, and 9-37 times higher than the global mean concentrations of GHGs, respectively. While CO2 concentration had no clear seasonal pattern, N2O and CH4 concentrations significantly differed between the dry and the rainy seasons. The increase in eutrophication status along the dense urban area was linearly correlated with the increase in GHGs concentrations. The presence of both nitrification and denitrification resulted in elevated N2O concentrations in this urban area of the estuary. The high concentration of CO2 was contributed by the high concentration of organic carbon and mineralization process. GHGs fluxes at the Saigon River Estuary were comparable to other urbanized estuaries regardless of climatic condition. Control of eutrophication in urbanized estuaries through the implantation of efficient wastewater treatment facilities will be an effective solution in mitigating the global warming potential caused by estuarine emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental , Estuários , Eutrofização , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise
4.
Sci Total Environ ; 761: 143195, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33189379

RESUMO

The hydrological dynamics of the Saigon River is ruled by a complex combination of factors, which need to be disentangled to prevent and limit risks of flooding and salt intrusion. In particular, the Saigon water discharge is highly influenced by tidal cycles with a relatively low net discharge. This study proposes a low-cost technique to estimate river discharge at high frequency (every 10 min in this study). It is based on a stage-fall-discharge (SFD) rating curve adapted from the general Manning Strickler law, and calibrated thanks to two ADCP campaigns. Two pressure sensors were placed at different locations of the river in September 2016: one at the centre of Ho Chi Minh City and one in Phu Cuong, 40 km upstream approximately. The instantaneous water discharge data were used to evaluate the net residual discharge and to highlight seasonal and inter-annual trends. Both water level and water discharge show a seasonal behaviour. Rainfall, including during the Usagi typhoon that hit the megalopolis in November 2018, has no clear and direct impact on water level and water discharge due to the delta flat morphology and complex response between main channel and side channel network and ground water in this estuarine system under tidal influence. However, we found some evidences of interactions between precipitation, groundwater, the river network and possibly coastal waters. This paper can be seen as a proof of concept to (1) present a low-cost discharge method that can be applied to other tidal rivers, and (2) demonstrate how the high-frequency discharge data obtained with this method can be used to evaluate discharge dynamics in tidal river systems.

5.
Sci Total Environ ; 784: 147261, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088067

RESUMO

Estuaries are amongst the most productive ecosystems of the land ocean continuum, but they are also under high anthropic pressures due to coastal urbanization. Too sparse observations have hindered the understanding of complex interactions between water quality and estuarine hydrodynamics and biogeochemical transformations. Until now, estuarine modelling studies have mainly focused on temperate estuarine systems in industrialized countries. This study investigates the responses of a tropical estuary to pollution load from a megacity (Ho Chi Minh City, Southern Vietnam) by applying a one-dimensional, biogeochemical estuarine model (C-GEM). The Saigon River Estuary flows through the megacity of Ho Chi Minh (HCMC) and is subject to episodic hypoxia events due to wastewater inputs from urban discharges. Good agreements are found between simulation outputs and observations for tidal propagation, salinity, total suspended sediment, and water quality variables in dry season in Saigon River Estuary. C-GEM reproduces the increases in ammonium, total organic carbon, phytoplankton and dissolved oxygen depletion in the urban section of the Saigon River as an impact of untreated wastewaters from HCMC. The steady-state version of C-GEM also reveals the formation of a pollutant cloud (30-km stretch) resulting from the combined effects of tidal fluctuation and low flushing capacity during the dry season. Furthermore, the quantification of the reaction fluxes simulated by the model demonstrates that nitrification is the main process removing NH4+ from the Saigon River. For the first time in such a type of environment, our study demonstrates the effectiveness of C-GEM at unraveling the complex interplay between biogeochemical reactions and transport in a tropical estuary with a minimized data requirement. This is significant for tropical estuaries in developing countries, where intensive monitoring programs are rare and have thus been rarely the object of modelling investigations.

6.
Environ Pollut ; 259: 113897, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926394

RESUMO

Anthropogenic fibers, gathering synthetic fibers, artificial fibers and natural fibers are ubiquitous in the natural environment. Tremendous concentrations of anthropogenic fibers were previously measured in the tropical Saigon River (Vietnam), i.e. a river impacted by textile and apparel industries. In the present study, we want to examine the role of contrasted seasonal variation (e.g., dry and rainy seasons), via the rainfall and monthly water discharges, and of water's physico-chemical conditions on the concentrations of anthropogenic fibers in the surface water. The one year and half monthly survey evidenced that concentrations of anthropogenic fibers varied from 22 to 251 items L-1 and their variations were not related to rainfall, water discharge or abiotic factors. However, their color and length distribution varied monthly suggesting variations in sources and sinks. Based on the 2017 survey, we estimated an annual emission of anthropogenic fibers from the river to the downstream coastal zone of 115-164 × 1012 items yr-1.


Assuntos
Monitoramento Ambiental , Rios , Estações do Ano , Poluentes Químicos da Água , Resíduos Industriais/efeitos adversos , Chuva , Rios/química , Indústria Têxtil , Clima Tropical , Vietnã , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 256: 113412, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31662256

RESUMO

The current study was conducted to (1) examine seasonal and spatial distribution of heavy metals and metalloid in sediment from the Saigon River and (2) apportion and quantify their pollution sources. Ninety-six sediment samples were taken in the rainy and dry season on 13 sampling sites, distributed over the lower reaches of the River, to analyze for exchangeable concentration of 11 heavy metals and metalloid (Al, B, Cd, Co, Fe, In, Mn, Ni, Pb, Sr, and Zn), pH, EC, organic carbon content, and particle-size distribution. Generally, the concentration of 11 elements was ranked in the order Mn > Al > Fe > Zn > Sr > In > B > Ni > Co > Pb > Cd. Hierarchical cluster analysis grouped 13 sampling sites into two parts based on the similar concentration of the 11 elements. Three-way analysis of variance showed that the total exchangeable concentration of 11 elements was significantly higher in the rainy season than in the dry season and in the upper part than in the lower part of the river. Principal component analysis/factor analysis and correlation analysis revealed that three pollution sources (PS) may contribute to enriching the 11 examined elements in the sediment. These sources included (PS1) from catchment through water erosion over natural areas, explaining 83%, (PS2) mixed sources from catchment through water erosion over agricultural fields and inside Ho Chi Minh City, accounting for 6%, and (PS3) mixed sources from lowland areas, explaining 7.8% of the total variance of the elements. In brief, the sediment concentration of 11 metals and metalloid varied with season and space and three major pollution sources from river catchment, inside Ho Chi Minh City, and lowland contributively enriched the elements in the sediment of the River.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Cidades , Poluição Ambiental/análise , Sedimentos Geológicos/química , Rios/química , Estações do Ano , Vietnã
8.
Environ Sci Pollut Res Int ; 27(16): 19383-19397, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215790

RESUMO

The metal concentration in surface water of a river could be affected by season, position, and oceanic process such as tide. The current study aimed to (1) examine the heavy metal(loid) concentration in surface water from the Saigon River as affected by the combination of season, tide, and position and (2) apportion and quantify pollution sources. Ninety-six surface water samples were collected from 13 sites on the River in four campaigns (rainy season + ebb tide, rainy season + flood tide, dry season + ebb tide, and dry season + flood tide). Eight heavy metal(loid)s (Al, B, Bi, Fe, Mn, Pb, Sr, and Zn) were measured and subjected to multivariate analyses. Three-way ANOVA showed that in the rainy season, the total concentration of the metal(loid)s (TCM) in two tides was not clearly different from each other while in the dry season the TCM was significantly higher during the ebb tide than during the flood tide. Principal component analysis/factor analysis and Pearson correlation matrix showed that the TCM could be derived from three main sources, grouped into anthropogenic activities such as industrial, agricultural, and domestic wastes from inside Ho Chi Minh city, and natural origins from lowland area and acid sulfate soil. Three pollution sources explained 70% and 68% of the total variance of TCM in the rainy and dry seasons, respectively. In brief, the metal(loid) concentration was significantly affected by the season and tide and the pollution sources could be derived from inside Ho Chi Minh City and from lowland areas beyond the river estuary.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Cidades , Monitoramento Ambiental , Análise Multivariada , Rios , Estações do Ano , Vietnã , Água
9.
Chemosphere ; 217: 261-269, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419380

RESUMO

A wide range of persistent organic chemicals, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), some insecticides, as well as polybrominated diphenyl ethers (PBDEs) and some perfluoroalkyl substances (PFASs) were analyzed in 17 bed sediments collected along the Saigon River and at adjacent canal mouths from upstream to downstream in Ho Chi Minh City (Vietnam). Concentrations were rather low for PAHs, as well as for legacy PCBs and dichloro-diphenyl-trichlorethane and metabolites (DDTs), or below detection limits for several PFASs and all PBDEs measured. Several insecticides (chlorpyrifos-ethyl, and the pyrethroids cypermethrin and λ-cyhalothrin) displayed rather high concentrations at a few sites within the city. There was no distinct upstream - downstream trend for PAHs, (DDTs) or PCBs. Although adjacent canal sediments tended to be more contaminated than Saigon River sediments, the differences were not significant. Emissions are almost certainly substantial for PAHs, and probably also for other contaminants such as PBDEs and some PFASs. During the dry season, contaminants are presumably stored in the city, either in canals or on urban surfaces. Heavy rainfall during the monsoon period carries away contaminated particle flows into the canals and then the Saigon River. The strong tidal influence in the river channel hinders the accumulation of contaminated particles. Contaminated deposits should accordingly be investigated further downstream in depositional environments, such as the mangrove.


Assuntos
Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Cidades , Monitoramento Ambiental , Poluição Ambiental , Éteres Difenil Halogenados/análise , Hidrocarbonetos Fluorados/análise , Inseticidas/análise , Compostos Orgânicos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Inquéritos e Questionários , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA