Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.251
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
2.
Exp Cell Res ; 443(1): 114295, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447625

RESUMO

The Atlantic salmon, Salmo Salar, is a societally important species of fish, both as a food source and as a component of aquatic biosphere. Its sustainable production is hampered by a wide range of infectious diseases, which is difficult to address due to the lack of in vitro tools to study the disease-host interaction. In this paper, we describe the establishment and characterization of a homogenous Atlantic salmon skin fibroblast (ASSF) cell line. This immortalized cell line grows well in standard media formulations and is capable of migration. It is transcriptionally stable over dozens of passages, and its transcriptome is distinct from other publicly available Atlantic salmon cell lines (SHK1 and ASK). Even though ASSF cells show limited cytopathic effects when challenged with Infectious Pancreatic Necrosis Virus (IPNV) molecular evidence reveals that they are infected and support IPNV production, especially compared to other cell lines like ASK or SHK1. The potential of the ASSF cell line as a tool for Atlantic salmon research is highlighted by its permissibility to genetic manipulation with various methods including CRISPR/cas9, transfection and transduction.

3.
BMC Biol ; 22(1): 160, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075472

RESUMO

BACKGROUND: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS: We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS: Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.


Assuntos
Copépodes , Doenças dos Peixes , Hiperplasia , Queratinócitos , Oncorhynchus kisutch , Salmo salar , Animais , Copépodes/fisiologia , Doenças dos Peixes/parasitologia , Salmo salar/parasitologia , Hiperplasia/veterinária , Queratinócitos/parasitologia , Resistência à Doença/genética , Interações Hospedeiro-Parasita
4.
Curr Issues Mol Biol ; 46(6): 5337-5351, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920991

RESUMO

Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.

5.
Cell Tissue Res ; 395(2): 199-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087072

RESUMO

Spatial transcriptomics is a technique that provides insight into gene expression profiles in tissue sections while retaining structural information. We have employed this method to study the pathological conditions related to red and melanized focal changes in farmed Atlantic salmon (Salmo salar). Our findings support a model where similar molecular mechanisms are involved in both red and melanized filet discolorations and genes associated with several relevant pathways show distinct expression patterns in both sample types. Interestingly, there appears to be significant cellular heterogeneity in the foci investigated when looking at gene expression patterns. Some of the genes that show differential spatial expression are involved in cellular processes such as hypoxia and immune responses, providing new insight into the nature of muscle melanization in Atlantic salmon.


Assuntos
Doenças dos Peixes , Infecções por Reoviridae , Salmo salar , Animais , Infecções por Reoviridae/patologia , Salmo salar/genética , Músculo Esquelético/patologia , Perfilação da Expressão Gênica , Transcriptoma/genética , Doenças dos Peixes/patologia
6.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063470

RESUMO

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Genótipo , Reprodução/genética , Genoma , Adaptação Fisiológica , Fatores de Transcrição
7.
Mol Ecol ; 33(2): e16933, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36942798

RESUMO

In Atlantic salmon, age at maturation is a life history trait governed by a sex-specific trade-off between reproductive success and survival. Following environmental changes across large areas of the Northeast Atlantic, many populations currently display smaller size at age and higher age at maturation. However, whether these changes reflect rapid evolution or plasticity is unknown. Approximately 1500 historical and contemporary salmon from the river Etne in Western Norway, genotyped at 50,000 SNPs, revealed three loci associated with age at maturation. These included vgll3 and six6 which collectively explained 36%-50% of the age at maturation variation in the 1983-1984 period. These two loci also displayed sex-specific epistasis, as the effect of six6 was only detected in males bearing two copies of the late maturation allele for vgll3. Strikingly, despite allelic frequencies at vgll3 remaining unchanged, the combined influence of these genes was nearly absent in all samples from 2013 to 2016, and genome-wide heritability strongly declined between the two time-points. The difference in age at maturation between males and females was upheld in the population despite the loss of effect from the candidate loci, which strongly points towards additional causative mechanisms resolving the sexual conflict. Finally, because admixture with farmed escaped salmon was excluded as the origin of the observed disconnection between gene(s) and maturation age, we conclude that the environmental changes observed in the North Atlantic during the past decades have led to bypassing of the influence of vgll3 and six6 on maturation through growth-driven plasticity.


Assuntos
Características de História de Vida , Salmo salar , Masculino , Feminino , Animais , Fenótipo , Genótipo , Reprodução/genética , Alelos , Salmo salar/genética
8.
Mol Ecol ; 33(21): e17535, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39314041

RESUMO

Escape of genetically distinct farmed Atlantic salmon (Salmo salar) raises concerns about their potential interactions with wild populations and the disruption of local adaptation through genetic admixture. It is often unknown whether genetic origin or common domestication effects will have a greater influence on consequences posed by escaped farmed fish. Previous work showed that domestication could have prevalent effects on the behaviour and growth of farmed salmon, independent of their genetic origin. Yet, less is known whether this extends more broadly to gene expression, particularly at critical early life stages. Thus, we compared the expression of 24 transcripts related to the immune response, structural maintenance, stress response and iron metabolism among distinct farmed (North American [NA] and European [EO]), wild (Newfoundland) and F1 hybrid salmon at hatching under controlled conditions using qPCR analyses. A slightly higher number of transcripts were differentially expressed between the wild population relative to EO (i.e. atf3a, atf3b, bnip3, trim37a, ftm, hp and gapdh) than NA-farmed salmon (i.e. epdl2, hba1a, hba1b, hbb4 and ftm). The most differences existed between the two farmed strains themselves (11 of 24 transcripts), with the fewest differentially expressed transcripts found between the F1 hybrids and the domesticated/wild maternal strains (4 of 24 transcripts). Interestingly, despite similarities in the overall extent of gene expression differences among cross types, the expression patterns differed relative to a past study that compared fry from the same cross types at the end of yolk sac absorption. Overall, our findings suggest that interbreeding of escaped farmed salmon with wild Newfoundland populations would alter transcript expression levels and that developmental stage influences these changes.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Terra Nova e Labrador , Hibridização Genética , Expressão Gênica/genética , Domesticação , Aquicultura , Europa (Continente)
9.
Mol Ecol ; : e17313, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429895

RESUMO

Sexual maturation in many fishes requires a major physiological change that involves a rapid transition between energy storage and usage. In Atlantic salmon, this transition for the initiation of maturation is tightly controlled by seasonality and requires a high-energy status. Lipid metabolism is at the heart of this transition since lipids are the main energy storing molecules. The balance between lipogenesis (lipid accumulation) and lipolysis (lipid use) determines energy status transitions. A genomic region containing a transcription co-factor of the Hippo pathway, vgll3, is the main determinant of maturation timing in Atlantic salmon. Interestingly, vgll3 acts as an inhibitor of adipogenesis in mice and its genotypes are potentially associated with seasonal heterochrony in lipid storage and usage in juvenile Atlantic salmon. Here, we explored changes in expression of more than 300 genes directly involved in the processes of adipogenesis, lipogenesis and lipolysis, as well as the Hippo pathway in the adipose tissue of immature and mature Atlantic salmon with distinct vgll3 genotypes. We found molecular evidence consistent with a scenario in which immature males with different vgll3 genotypes exhibit contrasting seasonal dynamics in their lipid profiles. We also identified components of the Hippo signalling pathway as potential major drivers of vgll3 genotype-specific differences in adipose tissue gene expression. This study demonstrates the importance of adipose gene expression patterns for directly linking environmental changes with energy balance and age at maturity through genetic factors bridging lipid metabolism, seasonality and sexual maturation.

10.
Mol Ecol ; 33(16): e17465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994907

RESUMO

The ecological role of heritable phenotypic variation in free-living populations remains largely unknown. Knowledge of the genetic basis of functional ecological processes can link genomic and phenotypic diversity, providing insight into polymorphism evolution and how populations respond to environmental changes. By quantifying the marine diet of Atlantic salmon, we assessed how foraging behaviour changes along the ontogeny, and in relation to genetic variation in two loci with major effects on age at maturity (six6 and vgll3). We used a two-component, zero-inflated negative binomial model to simultaneously quantify foraging frequency and foraging outcome, separately for fish and crustaceans diets. We found that older salmon forage for both prey types more actively (as evidenced by increased foraging frequency), but with a decreased efficiency (as evidenced by fewer prey in the diet), suggesting an age-dependent shift in foraging dynamics. The vgll3 locus was linked to age-dependent changes in foraging behaviour: Younger salmon with vgll3LL (the genotype associated with late maturation) tended to forage crustaceans more often than those with vgll3EE (the genotype associated with early maturation), whereas the pattern was reversed in older salmon. Vgll3 LL genotype was also linked to a marginal increase in fish acquisition, especially in younger salmon, while six6 was not a factor explaining the diet variation. Our results suggest a functional role for marine feeding behaviour linking genomic diversity at vgll3 with age at maturity among salmon, with potential age-dependent trade-offs maintaining the genetic variation. A shared genetic basis between dietary ecology and age at maturity likely subjects Atlantic salmon populations to evolution induced by bottom-up changes in marine productivity.


Assuntos
Genótipo , Salmo salar , Animais , Salmo salar/genética , Variação Genética , Dieta , Comportamento Alimentar
11.
Microb Pathog ; 197: 106981, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39349150

RESUMO

Listeria monocytogenes is the foodborne pathogen responsible for listeriosis in humans. Its ability to grow at refrigeration temperatures, particularly in products that support its growth and have a long-refrigerated shelf-life, poses a significant health risk, especially for vulnerable consumer groups such as pregnant women and immunocompromised individuals. A comprehensive analysis of L. monocytogenes in aquatic food products (AFPs) was conducted, examining the prevalence of the bacterium, the associated outbreaks, and the resulting deaths. Data from 66 studies, comprising a total of 19,373 samples, were analysed from the scientific literature to determine prevalence of the pathogen. The mean pooled prevalence of L. monocytogenes was 11 % (95 % CI: 8-14 %) among different AFPs categories. An overview of worldwide listeriosis outbreaks associated with contaminated AFPs between 1980 and 2023 was provided, totalling 1824 cases, including 41 deaths. Furthermore, a compilation of bio-based mitigation strategies was presented, including the use of lactic acid bacteria (LAB) and bacteriophages as bio-protective cultures to inhibit L. monocytogenes in AFPs. A variety of predictive microbiology models, based on growth prediction and interaction for L. monocytogenes, were reviewed to assess the effectiveness of control strategies in different types of AFPs, offering insights into pathogen behaviour throughout the production chain. The reported growth models describe primarily the impact of storage temperature on pathogen growth parameters, while interaction models, which reflect the inhibitory effect of LAB against L. monocytogenes, were generally defined using the Jameson-effect approach and Lotka-Volterra models' family (i.e., predator-prey models). Both models can be used to describe the simultaneous growth of two bacterial populations and their interactions (i.e., amensalism and antagonisms). Several Quantitative Risk assessment studies have been conducted for AFP, identifying the food category as a relevant contributor to Listeriosis risk, and providing predictive insight critical influence of storage temperature, food microbiota, product shelf-life, and population aging on the risk posed by L. monocytogenes. More importantly, this quantitative approach can serve as a key tool to assess the effectiveness of specific mitigation and intervention strategies to control the pathogen, such as sampling schemes or bio-preservation techniques.

12.
Glob Chang Biol ; 30(1): e17095, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273478

RESUMO

The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats-and the processes that generate and maintain them-will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.


Assuntos
Peixes , Salmão , Animais , Salmão/fisiologia , Rios , Lagos , Ecossistema , Mudança Climática
13.
Glob Chang Biol ; 30(10): e17508, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39377278

RESUMO

Disentangling the influences of climate change from other stressors affecting the population dynamics of aquatic species is particularly pressing for northern latitude ecosystems, where climate-driven warming is occurring faster than the global average. Chinook salmon (Oncorhynchus tshawytscha) in the Yukon-Kuskokwim (YK) region occupy the northern extent of their species' range and are experiencing prolonged declines in abundance resulting in fisheries closures and impacts to the well-being of Indigenous people and local communities. These declines have been associated with physical (e.g., temperature, streamflow) and biological (e.g., body size, competition) conditions, but uncertainty remains about the relative influence of these drivers on productivity across populations and how salmon-environment relationships vary across watersheds. To fill these knowledge gaps, we estimated the effects of marine and freshwater environmental indicators, body size, and indices of competition, on the productivity (adult returns-per-spawner) of 26 Chinook salmon populations in the YK region using a Bayesian hierarchical stock-recruitment model. Across most populations, productivity declined with smaller spawner body size and sea surface temperatures that were colder in the winter and warmer in the summer during the first year at sea. Decreased productivity was also associated with above average fall maximum daily streamflow, increased sea ice cover prior to juvenile outmigration, and abundance of marine competitors, but the strength of these effects varied among populations. Maximum daily stream temperature during spawning migration had a nonlinear relationship with productivity, with reduced productivity in years when temperatures exceeded thresholds in main stem rivers. These results demonstrate for the first time that well-documented declines in body size of YK Chinook salmon were associated with declining population productivity, while taking climate into account.


Assuntos
Tamanho Corporal , Mudança Climática , Ecossistema , Salmão , Animais , Salmão/fisiologia , Temperatura , Dinâmica Populacional , Estações do Ano , Teorema de Bayes , Yukon
14.
Glob Chang Biol ; 30(6): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837850

RESUMO

Rapid climate change is altering Arctic ecosystems at unprecedented rates. These changes in the physical environment may open new corridors for species range expansions, with substantial implications for subsistence-dependent communities and sensitive ecosystems. Over the past 20 years, rising incidental harvest of Pacific salmon by subsistence fishers has been monitored across a widening range spanning multiple land claim jurisdictions in Arctic Canada. In this study, we connect Indigenous and scientific knowledges to explore potential oceanographic mechanisms facilitating this ongoing northward expansion of Pacific salmon into the western Canadian Arctic. A regression analysis was used to reveal and characterize a two-part mechanism related to thermal and sea-ice conditions in the Chukchi and Beaufort seas that explains nearly all of the variation in the relative abundance of salmon observed within this region. The results indicate that warmer late-spring temperatures in a Chukchi Sea watch-zone and persistent, suitable summer thermal conditions in a Beaufort Sea watch-zone together create a range-expansion corridor and are associated with higher salmon occurrences in subsistence harvests. Furthermore, there is a body of knowledge to suggest that these conditions, and consequently the presence and abundance of Pacific salmon, will become more persistent in the coming decades. Our collaborative approach positions us to document, explore, and explain mechanisms driving changes in fish biodiversity that have the potential to, or are already affecting, Indigenous rights-holders in a rapidly warming Arctic.


Assuntos
Mudança Climática , Animais , Regiões Árticas , Canadá , Salmão/fisiologia , Temperatura , Distribuição Animal , Ecossistema , Estações do Ano
15.
Eur J Nucl Med Mol Imaging ; 51(7): 1926-1936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286937

RESUMO

PURPOSE: To evaluate the prognostic performance of [68Ga]Pentixafor PET/CT at baseline for staging of patients with newly diagnosed multiple myeloma (MM) and to compare it with [18F]FDG PET/CT and the Revised-International Staging System (R-ISS). METHODS: Patients who underwent [68Ga]Pentixafor and [18F]FDG PET/CT imaging were retrospectively included. Patient staging was performed according to the Durie-Salmon PLUS staging system based on [68Ga]Pentixafor PET/CT and [18F]FDG PET/CT images, and the R-ISS. Progression-free survival (PFS) at patient follow-up was estimated using the Kaplan-Meier estimator and compared using the log-rank test. Area under the receiver operating characteristic curve (AUC) was calculated to assess predictive performance. RESULTS: Fifty-five MM patients were evaluated. Compared with [18F]FDG PET, [68Ga]Pentixafor PET detected 25 patients as the same stage, while 26 patients were upstaged and 4 patients were downstaged (P = 0.001). After considering the low-dose CT data, there was no statistically significant difference in the number of patients classified in each stage using [68Ga]Pentixafor PET/CT and [18F]FDG PET/CT (P = 0.091). [68Ga]Pentixafor PET/CT-based staging discriminated PFS outcomes in patients with different disease stages (stage I vs. stage II, stage I vs. stage III, and stage II vs. stage III; all P < 0.05), whereas for [18F]FDG PET/CT, there was only a difference in median PFS between stage I and III (P = 0.021). When staged by R-ISS, the median PFS for stage III was significantly lower than that for stage I and II (P = 0.008 and 0.035, respectively). When predicting 2-year PFS based on staging, the AUC of [68Ga]Pentixafor PET/CT was significantly higher than that of [68Ga]Pentixafor PET (0.923 vs. 0.821, P = 0.002), [18F]FDG PET (0.923 vs. 0.752 P = 0.002), and R-ISS (0.923 vs. 0.776, P = 0.005). CONCLUSIONS: [68Ga]Pentixafor PET/CT-based staging possesses substantial potential to predict disease progression in newly diagnosed MM patients.


Assuntos
Fluordesoxiglucose F18 , Mieloma Múltiplo , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Mieloma Múltiplo/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Prognóstico , Peptídeos Cíclicos , Adulto , Estudos Retrospectivos , Complexos de Coordenação , Idoso de 80 Anos ou mais
16.
J Exp Biol ; 227(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39238479

RESUMO

Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.


Assuntos
Odorantes , Oncorhynchus kisutch , Receptores Odorantes , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/fisiologia , Odorantes/análise , Arginina/metabolismo , Olfato , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fixação Psicológica Instintiva , Mucosa Olfatória/metabolismo , Mucosa Olfatória/fisiologia , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841879

RESUMO

Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.


Assuntos
Circulação Coronária , Oncorhynchus kisutch , Animais , Feminino , Circulação Coronária/fisiologia , Masculino , Oncorhynchus kisutch/fisiologia , Consumo de Oxigênio/fisiologia , Metabolismo Basal
18.
Artigo em Inglês | MEDLINE | ID: mdl-38563675

RESUMO

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Assuntos
Flavobacterium , Salmo salar , Animais , Flavobacterium/genética , Chile , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
19.
Artigo em Inglês | MEDLINE | ID: mdl-39058544

RESUMO

Strain T-12T, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon (Salmo salar) fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12T belonged to the genus Flavobacterium, showing close relationships to Flavobacterium bernardetii F-372T (99.48 %) and Flavobacterium terrigena DS-20T (98.50 %). The genome size of strain T-12T was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12T with Flavobacterium bernardetii F-372T (GCA_011305415) and Flavobacterium terrigena DSM 17934T (GCA_900108955). The highest digital DNA-DNA hybridization (dDDH) values were 42.6 % with F. bernardetii F-372T (GCA_011305415) and 33.9 % with F. terrigena DSM 17934T (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F. bernardetii F-372T being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12T represents a new species. The major fatty acids were iso-C15 : 0 and C15 : 1ω6с. Detected polar lipids included phospholipids (n=2), aminophospholipid (n=1), aminolipid (n=1) and unidentified lipids (n=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12T (=CECT 30410T=RGM 3222T) as representing a novel species of Flavobacterium, for which the name Flavobacterium facile sp. nov. is proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Flavobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Salmo salar , Análise de Sequência de DNA , Vitamina K 2 , Animais , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Flavobacterium/classificação , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Salmo salar/microbiologia , DNA Bacteriano/genética , Chile , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Microbiologia da Água , Fosfolipídeos/análise
20.
Fish Shellfish Immunol ; 146: 109422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307300

RESUMO

The intestine is a barrier organ that plays an important role in the immune system of Atlantic salmon. The immune functions are distributed among the diffuse gut lymphoid tissue containing diverse immune cells, and other cell types. Comparison of intestinal transcriptomes with those of other organs and tissues offers an opportunity to elucidate the specific roles of the intestine and its relationship with other parts of the body. In this work, a meta-analysis was performed on a large volume of data obtained using a genome-wide DNA oligonucleotide microarray. The intestine ranks third by the expression level of immune genes after the spleen and head kidney. The activity of antigen presentation and innate antiviral immunity is higher in the intestine than in any other tissue. By comparing transcriptome profiles, intestine shows the greatest similarity with the gill, head kidney, spleen, epidermis, and olfactory rosette (descending order), which emphasizes the integrity of the peripheral mucosal system and its strong connections with the major lymphoid organs. T cells-specific genes dominate among the genes co-expressed in these tissues. The transcription signature of CD8+ (86 genes, r > 0.9) includes a master gene of immune tolerance foxp3 and other negative regulators. Different segments of the intestine were compared in a separate experiment, in which expression gradients along the intestine were found across several functional groups of genes. The expression of luminal and intracellular (lysosome) proteases is markedly higher in pyloric caeca and distal intestine respectively. Steroid metabolism and cytochromes P450 are highly expressed in pyloric caeca and mid intestine while the distal intestine harbors genes related to vitamin and iron metabolism. The expression of genes for antigen presenting proteins and immunoglobulins shows a gradual increase towards the distal intestine.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Transcriptoma , Análise de Sequência com Séries de Oligonucleotídeos , Baço/metabolismo , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA