Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 180, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355402

RESUMO

Pecan scab is a devastating disease that causes damage to pecan (Carya illinoinensis (Wangenh.) K. Koch) fruit and leaves. The disease is caused by the fungus Venturia effusa (G. Winter) and the main management practice for controlling the disease is by application of fungicides at 2-to-3-week intervals throughout the growing season. Besides disease-related yield loss, application of fungicides can result in considerable cost and increases the likelihood of fungicide resistance developing in the pathogen. Resistant cultivars are available for pecan growers; although, in several cases resistance has been overcome as the pathogen adapts to infect resistant hosts. Despite the importance of host resistance in scab management, there is little information regarding the molecular basis of genetic resistance to pecan scab.The purpose of this study was to elucidate mechanisms of natural pecan scab resistance by analyzing transcripts that are differentially expressed in pecan leaf samples from scab resistant and susceptible trees. The leaf samples were collected from trees in a provenance collection orchard that represents the natural range of pecan in the US and Mexico. Trees in the orchard have been exposed to natural scab infections since planting in 1989, and scab ratings were collected over three seasons. Based on this data, ten susceptible trees and ten resistant trees were selected for analysis. RNA-seq data was collected and analyzed for diseased and non-diseased parts of susceptible trees as well as for resistant trees. A total of 313 genes were found to be differentially expressed when comparing resistant and susceptible trees without disease. For susceptible samples showing scab symptoms, 1,454 genes were identified as differentially expressed compared to non-diseased susceptible samples. Many genes involved in pathogen recognition, defense responses, and signal transduction were up-regulated in diseased samples of susceptible trees, whereas differentially expressed genes in pecan scab resistant samples were generally down-regulated compared to non-diseased susceptible samples.Our results provide the first account of candidate genes involved in resistance/susceptibility to pecan scab under natural conditions in a pecan orchard. This information can be used to aid pecan breeding programs and development of biotechnology-based approaches for generating pecan cultivars with more durable scab resistance.


Assuntos
Ascomicetos , Carya , Fungicidas Industriais , Carya/genética , Carya/microbiologia , Transcriptoma , Árvores/genética , Ascomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
2.
Phytopathology ; : PHYTO09230347R, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079373

RESUMO

Common scab is an economically costly soilborne disease of potato endemic in many potato-growing regions. The disease is caused by species of Streptomyces bacteria that produce the phytotoxin thaxtomin A. The primary disease management tool available to growers is planting resistant cultivars, but no cultivar is fully resistant to common scab, and partially resistant cultivars are often not the preferred choice of growers because of agronomic or market considerations. Therefore, growers would benefit from knowledge of the presence and severity of common scab infestations in field soils to make informed planting decisions. We implemented a quantitative PCR diagnostic assay to enable field detection and quantification of all strains of Streptomyces that cause common scab in the United States through amplification of thaxtomin A biosynthetic genes. Greenhouse trials confirmed that pathogen abundance was highly correlated with disease severity for five distinct phytopathogenic Streptomyces species, although the degree of disease severity was dependent on the pathogen species. Correlations between the abundance of the thaxtomin biosynthetic genes from field soil with disease on tubers at field sites across four U.S. states and across 2 years were not as strong as correlations observed in greenhouse assays. We also developed an effective droplet digital PCR diagnostic assay that also has potential for field quantification of thaxtomin biosynthetic genes. Further improvement of the PCR assays and added modeling of other environmental factors that impact disease outcome, such as soil composition, can aid growers in making informed planting decisions.

3.
Phytopathology ; 114(3): 568-579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37856690

RESUMO

Powdery scab disease, caused by the soilborne protist Spongospora subterranea f. sp. subterranea, poses a major constraint to potato production worldwide. Disease symptoms include damage to the tuber skin and the formation of root galls. This study aimed to investigate the potential mechanism behind the formation of sporosori, which are aggregates of resting spores, within root galls. Scanning electron microscopy analysis revealed that the early stage of gall formation, characterized by a white color, involved the accumulation of starch grains, which later disappeared as the gall matured and turned brown. The mature brown galls were found to contain fully formed sporosori. Light microscopy examination of ultramicrotome sections of the root galls showed that the high-amylopectin starches were surrounded by a plasmodium, a precursor to sporosorus. These findings suggest that starch grains contribute to the formation of a sponge-like structure within the sporosori. A significant reduction in total starch levels in both the root galls and their associated roots was observed compared with healthy roots. These findings indicate starch consumption by sporosori during the maturation of root galls. Interestingly, analysis of the transcript levels of starch-related genes showed downregulation of genes encoding starch degrading enzymes and an amylopectin-debranching enzyme, whereas genes encoding a starch synthase and a protein facilitating starch synthesis were upregulated in the infected roots. Overall, our results demonstrate that starch is consumed during sporosorus formation, and the pathogen likely manipulates starch homeostasis to its advantage for sporosorus development within the root galls.


Assuntos
Doenças das Plantas , Plasmodioforídeos , Amido , Amilopectina , Metabolismo dos Carboidratos , Plasmodioforídeos/genética
4.
Phytopathology ; 114(9): 2096-2112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875177

RESUMO

The Fusarium head blight (FHB) pathogen Fusarium graminearum produces the trichothecene mycotoxin deoxynivalenol and reduces wheat yield and grain quality. Spring wheat (Triticum aestivum) genotype CB037 was transformed with constitutive expression (CE) constructs containing sorghum (Sorghum bicolor) genes encoding monolignol biosynthetic enzymes caffeoyl coenzyme A (CoA) 3-O-methyltransferase (SbCCoAOMT), 4-coumarate-CoA ligase (Sb4CL), or coumaroyl shikimate 3-hydroxylase (SbC3'H) or monolignol pathway transcriptional activator SbMyb60. Spring wheats were screened for type I (resistance to initial infection, using spray inoculations) and type II (resistance to spread within the spike, using single-floret inoculations) resistances in the field (spray) and greenhouse (spray and single floret). Following field inoculations, disease index, percentage of Fusarium-damaged kernels (FDK), and deoxynivalenol measurements of CE plants were similar to or greater than those of CB037. For greenhouse inoculations, the area under the disease progress curve (AUDPC) and FDK were determined. Following screens, focus was placed on two each of SbC3'H and SbCCoAOMT CE lines because of trends toward a decreased AUDPC and FDK observed following single-floret inoculations. These four lines were as susceptible as CB037 following spray inoculations. However, single-floret inoculations showed that these CE lines had a significantly reduced AUDPC (P < 0.01) and FDK (P ≤ 0.02) compared with CB037, indicating improved type II resistance. None of these CE lines had increased acid detergent lignin compared with CB037, indicating that lignin concentration may not be a major factor in FHB resistance. The SbC3'H and SbCCoAOMT CE lines are valuable for investigating phenylpropanoid-based resistance to FHB.


Assuntos
Fusarium , Doenças das Plantas , Triticum , Fusarium/genética , Fusarium/fisiologia , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Tricotecenos/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Resistência à Doença/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/microbiologia , Sorghum/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Phytopathology ; 114(9): 2055-2063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970808

RESUMO

Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.


Assuntos
Ascomicetos , Bacillus subtilis , Doenças das Plantas , Raízes de Plantas , Solanum tuberosum , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Solanum tuberosum/imunologia , Bacillus subtilis/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/imunologia , Ascomicetos/fisiologia
6.
Phytopathology ; 114(3): 521-537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831969

RESUMO

The use of biocontrol agents (BCAs) coping with fungal pathogens causing Fusarium head blight (FHB) is a compelling strategy for disease management, but a better elucidation of their effectiveness is crucial. Meta-analysis is the analysis of the results of multiple studies, which is typically performed to synthesize evidence from many possible sources in a formal probabilistic manner. This meta-analytic study, including 30 pathometric, biometric, physiochemical, genetic, and mycotoxin response variables reported in 56 studies, evidences the BCA effects on FHB in wheat. The effectiveness of BCAs of FHB in wheat in terms of pathogen abundance and disease reductions, biomass and yield conservation, and mycotoxin prevention/control was confirmed. BCAs showed higher efficacy (i) in studies published more recently; (ii) under controlled conditions; (iii) in high susceptible wheat cultivars; (iv) when Fusarium inoculation and BCA treatment did not occur directly on the plant (i.e., at the seed and kernel levels) in terms of disease development and mycotoxin control, and vice versa in terms of biomass conservation; (v) if Fusarium inoculation and BCA treatment occurred by spraying spikes in terms of yield; (vi) at 15 to 21 days post Fusarium inoculation or BCA treatment; and (vii) if they were filamentous fungi. However, BCAs overall were less efficacious than conventional agrochemicals, especially in terms of pathogen abundance and FHB reductions, as well as of mycotoxin prevention/control, although inconsistencies were reported among the investigated moderator variables. This study also highlights the complexity of reaching a good balance among BCA effects, and the need for further research.


Assuntos
Fusarium , Micotoxinas , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia
7.
Phytopathology ; 114(1): 146-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37366579

RESUMO

Potato common scab is an important bacterial plant disease caused by numerous Streptomyces species and strains. A better understanding of the genetic diversity and population dynamics of these microorganisms in the field is crucial to develop effective control methods. Our research group previously studied the genetic diversity of scab-causing Streptomyces spp. in Prince Edward Island, one of Canada's most important potato-growing provinces. Fourteen distinct Streptomyces genotypes were identified and displayed contrasting aggressiveness toward potato tubers. To better understand the distribution and occurrence of these genotypes over time under field conditions, the population dynamics were studied in nine commercial potato fields throughout a growing season. A comparative genomic-driven approach was used to design genotype-specific primers and probes, allowing us to quantify, using quantitative polymerase chain reaction, the abundance of each of the 14 genotypes in field soil. Thirteen of the previously identified genotypes were detected in at least one soil sample, with various frequencies and population sizes across the different fields under study. Interestingly, weakly virulent genotypes dominated, independent of time or location. Among them, three genotypes accounted for more than 80% of the genotypes' combined population. Although the highly virulent genotypes were detected in lower relative abundance than the weakly virulent ones, an increase in the highly virulent genotypes' population size was observed over the growing season in most fields. The results will ultimately be useful for the development of targeted common scab control strategies.


Assuntos
Solanum tuberosum , Streptomyces , Ilha do Príncipe Eduardo , Solanum tuberosum/microbiologia , Estações do Ano , Streptomyces/genética , Doenças das Plantas/microbiologia , Genótipo , Solo
8.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885025

RESUMO

Psidium guajava L. is widely cultivated in southern China. In May 2021, guava scab on cv. Zhenzhu was observed in Zhanjiang (21.18° N, 110.21° E), Guangdong province, China. Guava scab was corky with ovoid or round lesions on the surfaces of green fruits. Gradually the lesions sunk. Disease incidence was estimated as 85% in 500 investigated plants in about 50 ha. Twenty diseased fruits were collected from twenty trees in the field. From each fruit the margin of the diseased tissues was cut into 2 mm × 2 mm pieces; surface disinfected with 75% ethanol and 2% sodium hypochlorite for 30 and 60 s, successively; and rinsed thrice with sterile water. The tissues were plated onto potato dextrose agar (PDA) medium and incubated at 28 ℃. Thirty-four isolates were obtained. Single-spore isolation method (Liu et al. 2021) was used to recover pure cultures of three isolates (PGNC-1, PGNC-2, and PGNC-3) . The colonies were initially white with cottony aerial mycelium at 7 days on PDA. Then, these colonies form black acervular conidiomata at 10 days. Conidia were clavate to fusiform, four-septate, straight or slightly curved, and measured 15.8 to 21.2 µm × 4.5 to 6.5 µm (n = 40). The three median cells were versicolored, whereas the basal and apical cells were hyaline. Conidia had a single basal appendage (4.5 to 5.5 µm long; n = 40) and three apical appendages (19.2 to 24.5 µm long; n = 40). The morphological characteristics of the isolates were consistent with the description of Neopestalotiopsis clavispora (Maharachchikumbura et al. 2012). Molecular identification was performed using PCR method with MightyAmp DNA Polymerase (Takara-Bio, Dalian, China) (Lu et al. 2012). Sequences were generated from the isolates using primers for the rDNA ITS (ITS1/ITS4), TEF1-α (EF1-728F/EF1-986R), and ß-tubulin (T1/ßt2b) loci (Maharachchikumbura et al. 2012). The sequences of the isolates were submitted to GenBank (ITS, OQ996557 to OQ996559; TEF, OR101037 to OR101039; ß-tubulin, OR100971 to OR100973). The sequences of the isolates were 100% identical to the type strain MFLUCC12-0281 (accession nos. JX398979, JX399014, and JX399045) through BLAST analysis. The isolates clustered with N. clavispora (MFLUCC12-0280 and MFLUCC12-0281). N. clavispora and Pestalotiopsis clavispora are synonyms. The pathogenicity was tested in vivo. Plants (cv. Zhenzhu) were grown ( 3 years old) in a quarantine orchard at 25 â„ƒ to 32 â„ƒ with 60 to 80% relative humidity in May 2022. Disease-free green fruits were inoculated. Sterile cotton balls were immersed in the spore suspension (1 × 105 per mL) and sterile distilled water (control) for about 15 s before they were fixed on the wounded fruits with transparent tape. Five fruits on one plant per isolate were inoculated. Five fruits on one plant severed as control. The test was performed thrice. Disease symptoms were found on the inoculated fruits after 20 days, whereas the controls remained healthy. The pathogen was re-isolated from infected fruits and was phenotypically identical to the original isolates thus fulfilling Koch's postulates. Neopestalotiopsis or Pestalotiopsis spp. were reported to be the causal agents of guava scab in Colombia and in Hawaii (Keith et al. 2006; Solarte et al. 2018). N. clavispora has been reported to cause disease in a broad range of hosts (Ge et al. 2009; Chen et al. 2018), but not in guava. This is the first report of N. clavispora causing guava scab in China. There would be no harvest if this disease is left unmanaged.

9.
Plant Dis ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861470

RESUMO

Severe typical deep-pitted lesions of Potato Common Scab (PCS) disease were observed in two locations in China, Dingxi, Gansu Province, and Shuozhou, Shaanxi Province, in 2021. Potato farms in Dingxi growing cultivar Huangxin 226 (26 hectares) exhibited a scab disease incidence of 10%, while cultivar Jinshu 15# (4 hectares) in Shuozhou showed a disease incidence of 30% (Fig. 1). During harvest, tubers displaying PCS symptoms were collected for pathogen isolation. To obtain pathogen isolates, surface-sterilized tuber tissue with scab lesions was ground in sterile water, serially diluted, and plated onto ISP5 agar medium plates (Handique et al. 2022). Five pure colonies of Streptomyces isolate were obtained, designated as ZRIMU1503, ZRIMU1502, ZRIMU1320, ZRIMU1321and ZRIMU791. Genomic DNA was extracted and sequenced using Illumina technology. Sequencing data of the 5 isolates were uploaded to NCBI GenBank and annotated (Accession numbers: JBBAYL010000000, JBBAYM010000000, JBBAYN010000000, JBBAYO010000000 and JBBAYP010000000, respectively) using the PGAP pipeline (Tatusova et al. 2016). Average Nucleotide Identity (ANI) values (97.52 %, 97.53 %,97.54 %,97.57 % and 97.52 %, respectively) indicated the identity of the five isolates to the type strain S. brasiliscabiei IBSBF 2867T. Additionally, pairwise comparisons of Digital DNA Hybridization (DDH) value (76.2%, 76.3%, 76.4%, 76.4% and 76.2% respectively) of all the Streptomyces type strains show the highest identity to S. brasiliscabiei IBSBF 2867T. Twelve housekeeping genes (acnA, atpD, dnaN, gap, gyrA, gyrB , infB, mdh, recA, rplB, rpoB, and trpB) were extracted from the genome sequence of the five isolates to construct a multi-locus sequence analysis (MLSA) tree. The evolutionary distance of the five isolates was constructed using MEGAX software (Kumar et al., 1994), along with other Streptomyces strains that are known to cause PCS. The resulting cladogram demonstrated the isolated strains clustered together with S. brasiliscabiei IBSBF 2867T (Fig.2). Koch's postulates were fulfilled by inoculating a perlite potting mix with spore suspensions of each isolate (104 CFU/ml), planting tubers (cv. Favorita), and reproducing PCS symptoms at harvest after three months. Negative control received water treatment. The plants were kept in greenhouse with 12 h of light per day and irrigated regularly. The experiment was repeated twice, once in April 2022 and again in April 2023. On harvest, all five isolates exhibited development of severe symptoms of PCS (Fig.1), while the negative controls had no lesions. The pathogen was reisolated from the lesions and confirmed to be identical to the original isolate by 16S rRNA gene sequences. To our knowledge, this is the first report of S. brasiliscabiei causing PCS in China. S. brasiliscabiei was identified as a new species to cause PCS in Brazil and was identified based on morphology, pathogenicity, and genetic features (Corrêa et al. 2021). Multiple pathogen-causing PCS has been recognized in China and a surge of disease incidence in potato fields has been reported (Handique et al. 2022; Wu et al. 2023). S. brasiliscabiei causes severe symptoms which makes potatoes unmarketable. The disease epidemiology of this pathogen needs to be investigated.

10.
Plant Dis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956957

RESUMO

Kiwi (Actinidia chinesis) is an economically important fruit in Korea, with 1,300 ha cultivated and a production of approximately 25,000 tons per year (Kim and Koh, 2018; Kim and Choi, 2023). In late June 2020, fruit scab symptoms were observed on A. chinensis var. rufopulpa in an orchard in Suncheon, Korea. The incidence of scab symptoms among 20-year-old trees was over 75%, primarily superficial, but rendered the fruit less marketable. In the initial stages of the disease, small, light-brown, circular, and oval spots were formed. As the superficial spots expanded, they became cracked scabs measuring 1 to 7 cm with light edges at the later stages. To isolate the causal pathogen, two lesions were cut from two sections of symptomatic tissue, from each of seven fruits from seven trees. Lesions were surface-sterilized with 70% ethanol for 1 min and washed three times with sterilized distilled water (SDW). The sterilized pieces were placed on potato dextrose agar (PDA) and incubated in the dark at 25°C for one week. After subculturing on PDA, single-spore isolation produced 14 isolates: SYP-410 to 423). All 14 colonies appeared greyish-green and cottony on PDA after 7 d. Conidia were pale brown, ellipsoid to obclavate, with ornamented walls, 1 to 6 transverse and 0 to 3 vertical septa, and length × width of 21.5 to 53.4 × 7.3 to 19.2 µm (avg. 33.0 × 12.0 µm, n = 100). Their morphological characteristics were consistent with Alternaria spp. (van der Waals et al. 2011; Woudenberg et al. 2015). We randomly selected three isolates from the morphologically similar cultures and named them SYP-412 to 414 for further investigation. The ITS (GenBank accession nos.: OR901850 to 52), gapdh (OR924309 to 11), tef1 (OR924312 to 14), rpb2 (OR924315 to 17), Alt a1 (OR924318 to 20), endoPG (OR924321 to 23), and OPA10-2 (OR924324 to 26) sequences from SYP-412 to 414 had a 100% (515 bp/515 bp), 100% (578/578), 100% (240/240), 100% (724/724), 95.55% (451/472), 99.33% (445/448), and 100% (634/634) identity with that of type strain A. alternata CBS 918.96 (AF347032, AY278809, KC584693, KC584435, AY563302, KP124026, and KP124633), respectively. Results from the maximum likelihood phylogenetic analysis, based on the seven concatenated gene sequences, placed the representative isolates in a clade with A. alternata. Pathogenicity of SYP-412 was tested using 12 surface-sterilized two-month-old kiwifruits on a 20-year-old trees. Six kiwifruits were spray-inoculated with 5 mL of a conidial suspension (1 × 106 conidia/ml) generated after culturing in PDA medium for 7 d, with or without wounding. Another six control fruits were inoculated with SDW with and without wounding. The inoculated kiwifruits were enclosed in plastic bags to maintain high humidity for one day. Scab symptoms were observed in both wounded and unwounded fruits six weeks after inoculation, but not in the control. The pathogenicity test was performed on a total of three separate trees twice. To satisfy Koch's postulates, A. alternata was re-isolated from all the symptomatic tissues and confirmed by analyzing the ITS and rpb2 genes. Although scab disease caused by A. tenuissima (now A. alternata) has been previously reported in kiwifruit of A. chinensis var. rufopulpa in China (Woudenberg et al. 2015; Ma et al., 2019), this is the first report of its occurrence on kiwifruit in Korea and will help in future detection and control.

11.
Plant Dis ; 108(9): 2731-2739, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38616388

RESUMO

Eucalyptus scab and shoot malformation caused by Elsinoë necatrix is an emerging disease and a serious threat to the global commercial forestry industry. The disease was first discovered in North Sumatra, Indonesia, and now requires a simple and effective method for early pathogen detection. In this study, a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay was developed for E. necatrix. A unique region in a secondary metabolite gene cluster was used as a target for the assay. To test robustness of the assay, LAMP was verified in 15 strains of E. necatrix. A specificity test against 23 closely related Elsinoë species and three fungal species commonly isolated on Eucalyptus showed that the LAMP assay exclusively identified E. necatrix isolates. The assay had a high level of sensitivity, able to detect 0.01 ng (approximately 400 target copies) of pure E. necatrix DNA. Furthermore, using a simple DNA extraction method, it was possible to use this assay to detect E. necatrix in infected Eucalyptus leaves.


Assuntos
Eucalyptus , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Folhas de Planta , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Folhas de Planta/microbiologia , Brotos de Planta/microbiologia , Sensibilidade e Especificidade , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , DNA Fúngico/genética , Técnicas de Diagnóstico Molecular
12.
Plant Dis ; 108(7): 2148-2153, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38468137

RESUMO

Spongospora subterranea f. sp. subterranea (Sss) is a soilborne potato pathogen responsible for causing powdery scab on tubers and galls on roots, reducing root water uptake through colonizing root hairs, and vectoring of Potato mop-top virus (PMTV). However, effects of Sss on overall plant susceptibilities against subsequent infections of potato pathogens above ground have not been previously reported. This study aimed to investigate the effects of Sss on root and tuber disease expression, yield, and susceptibilities to subsequent late blight and white mold infections across six potato varieties. Sss-infected Silverton plants had 28.3% less total tuber yield and 29% fewer tubers compared to noninfected Silverton plants. We did not find a correlation across the varieties between root colonization and root gall formation. Sss-infected Silverton plants were more susceptible to hemibiotrophic late blight and less susceptible to necrotrophic white mold. Sss infection also increased susceptibilities of Goldrush and Atlantic plants to white mold. We also evaluated prevalence of asymptomatic Sss infections across the six varieties. Between 50 and 92% of the asymptomatic tubers tested positive for Sss DNA, depending on the variety. Further research is required to understand the possibility and extent of these asymptomatic infections to the spread of Sss in the field. These findings highlight the complexity of Sss-host interactions and give precedence that the lack of disease expression does not necessarily indicate resistance of a variety to Sss.


Assuntos
Ascomicetos , Doenças das Plantas , Raízes de Plantas , Solanum tuberosum , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Raízes de Plantas/microbiologia , Raízes de Plantas/virologia , Ascomicetos/fisiologia , Suscetibilidade a Doenças , Tubérculos/microbiologia , Tubérculos/virologia
13.
Plant Dis ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026428

RESUMO

Potato common scab is an important bacterial disease afflicting potatoes around the world. Better knowledge of the local Streptomyces spp. populations causing this disease is key to developing durable control strategies. In this study, we isolated 230 Streptomyces strains from scab-infected potato tubers harvested from commercial potato fields located across the province of Quebec, Canada. The genetic diversity of this collection was first studied using repetitive element-based PCR fingerprinting, and the genomes of 36 representative strains were sequenced using PacBio's sequencing technology. This enabled us to identify the strains to the species level, to study the distribution of previously characterized virulence-associated genes and clusters, and to explore the repertoires of putative plant cell wall-degrading enzymes. In parallel, the virulence of the 36 strains was evaluated using a potato tuber slice assay. The diversity was higher than previously reported, as eleven phytopathogenic species were found across the province. Among them, S. scabiei and S. acidiscabies were the most abundant as well as the most virulent. Strains belonging to these two species harbored numerous virulence determinants, including the thaxtomin biosynthetic gene cluster. By contrast, most weakly virulent strains lacked this cluster but harbored at least one known virulence determinant. The results obtained suggest that a higher number of virulence-associated genes and clusters in the genome of phytopathogenic Streptomyces spp. is associated with greater virulence. This study contributes to increasing the publicly available genomic resources of scab-causing Streptomyces spp., and expand our knowledge on the diversity and virulence of this important bacterial pathogen.

14.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255824

RESUMO

Every land plant exists in a close relationship with microbial communities of several niches: rhizosphere, endosphere, phyllosphere, etc. The growth and yield of potato-a critical food crop worldwide-highly depend on the diversity and structure of the bacterial and fungal communities with which the potato plant coexists. The potato plant has a specific part, tubers, and the soil near the tubers as a sub-compartment is usually called the "geocaulosphere", which is associated with the storage process and tare soil microbiome. Specific microbes can help the plant to adapt to particular environmental conditions and resist pathogens. There are a number of approaches to modulate the microbiome that provide organisms with desired features during inoculation. The mechanisms of plant-bacterial communication remain understudied, and for further engineering of microbiomes with particular features, the knowledge on the potato microbiome should be summarized. The most recent approaches to microbiome engineering include the construction of a synthetic microbial community or management of the plant microbiome using genome engineering. In this review, the various factors that determine the microbiome of potato and approaches that allow us to mitigate the negative impact of drought and pathogens are surveyed.


Assuntos
Microbiota , Micobioma , Solanum tuberosum , Comunicação , Solo
15.
World J Microbiol Biotechnol ; 40(4): 122, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441818

RESUMO

This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.


Assuntos
Enterobacteriaceae , Streptomyces , Turquia , Filogenia , Tipagem Molecular , Streptomyces/genética
16.
BMC Genomics ; 24(1): 143, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959546

RESUMO

Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.


Assuntos
Solanum tuberosum , Streptomyces , Virulência/genética , Filogenia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Genômica , Doenças das Plantas
17.
Arch Microbiol ; 205(6): 222, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149838

RESUMO

Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.


Assuntos
Solanum tuberosum , Streptomyces , Streptomyces/genética , Doenças das Plantas , Microbiologia do Solo , Solo
18.
Artigo em Inglês | MEDLINE | ID: mdl-37319004

RESUMO

Two new actinobacteria, designated strains IBSBF 2807T and IBSBF 2953T, isolated from scab lesions on potato tubers grown in the southern Brazilian states of Rio Grande do Sul and Santa Catarina, respectively, were characterized and identified through a polyphasic approach. Phylogenetic analyses of 16S rRNA sequences revealed that these two strains belong to the genus Streptomyces. Multilocus sequence analysis using five concatenated genes, atpD, gyrB, recA, rpoB and trpB, allocated strains IBSBF 2807T and IBSBF 2953T in distinct branches of Streptomyces phytopathogenic strains. PCR-RFLP analysis of the atpD gene also confirmed that these strains differ from the type strains of Streptomyces associated with potato scab. The morphological, physiological and biochemical characterization, along with the overall genome-related index properties, indicated that these two strains could be distinguished from their closest phylogenetic relatives and each other. According to the data, IBSBF 2807T and IBSBF 2953T represent two new Streptomyces species related to potato scab. The proposed names for these strains are Streptomyces hilarionis sp. nov. (IBSBF 2807T=CBMAI 2674T=ICMP 24297T=MUM 22.66T) and Streptomyces hayashii sp. nov (IBSBF 2953T=CBMAI 2675T=ICMP 24301T=MUM 22.68T).


Assuntos
Solanum tuberosum , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Brasil , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases
19.
Microb Ecol ; 86(2): 1343-1363, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36307735

RESUMO

The olive tree is one of the most important agricultural plants, affected by several pests and diseases that cause a severe decline in health status leading to crop losses. Olive leaf spot disease caused by the fungus Venturia oleaginea can result in complete tree defoliation and consequently lower yield. The aim of the study was to obtain new knowledge related to plant-pathogen interaction, reveal mechanisms of plant defense against the pathogen, and characterize fungal phyllosphere communities on infected and symptomless leaves that could contribute to the development of new plant breeding strategies and identification of novel biocontrol agents. The highly susceptible olive variety "Istrska Belica"' was selected for a detailed evaluation. Microscopy analyses led to the observation of raphides in the mesophyll and parenchyma cells of infected leaves and gave new insight into the complex V. oleaginea pathogenesis. Culturable and total phyllosphere mycobiota, obtained via metabarcoding approach, highlighted Didymella, Aureobasidium, Cladosporium, and Alternaria species as overlapping between infected and symptomless leaves. Only Venturia and Erythrobasidium in infected and Cladosporium in symptomless samples with higher abundance showed statistically significant differences. Based on the ecological role of identified taxa, it can be suggested that Cladosporium species might have potential antagonistic effects on V. oleaginea.


Assuntos
Ascomicetos , Basidiomycota , Micobioma , Olea , Olea/microbiologia , Interações Hospedeiro-Patógeno
20.
Mol Biol Rep ; 50(10): 8421-8429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620739

RESUMO

BACKGROUND: Venturia inaequalis is an apple scab causing fungal pathogen. It is a highly contagious and destructive pathogen which rapidly spreads infection in the surrounding orchards if not managed. The management and control of disease require multiple fungicides to be sprayed at different development stages of the apple. Persistent applications of fungicides also raises environmental concerns. Here, we demonstrate the potential of using spray induced gene silencing (SIGS) by developing target specific gene constructs for the synthesis of corresponding double-stranded RNA (dsRNA). METHODS AND RESULTS: The exogenous application of dsRNAs was found to reduce mycelial growth and spore formation of V. inaequalis on culture plates. Four genes of V. inaequalis viz. CIN1, CE5, VICE12 and VICE16 which get upregulated during infection, were selected as targets for the development of gene construct expressing the corresponding dsRNA. The effect of exogenously supplied in vitro synthesized dsRNA on V. inaequalis was assessed in culture bioassay experiments with respect to growth, and spore formation. The expression level of the target genes in treated and control fungus was evaluated using quantitative PCR. Fungus treated with VICE12 targeted dsRNA showed maximum reduction in colony size (~ 55%), conidia formation (~ 93%) and expression level of the corresponding gene (2.2 fold), which was followed by CIN1-dsRNA. VICE16-dsRNA treatment was least effective with 32% reduction in growth, the non-significant effect of conidial spore formation and 1.13 fold down regulation of corresponding target gene expression level. CONCLUSION: The result of this investigation validates the hypothesis that RNAi is evoked in V. inaequalis by exogenously supplied dsRNA and spray induced gene silencing (SIGS) based solutions may reduce burden of fungicide usage on apple crop against apple scab disease in future.


Assuntos
Ascomicetos , Fungicidas Industriais , Malus , Fungicidas Industriais/farmacologia , Ascomicetos/genética , Interferência de RNA , Regulação para Baixo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA