RESUMO
Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.
Assuntos
Dioxigenases , Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Humanos , Diferenciação Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Dioxigenases/metabolismoRESUMO
Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Espermatogônias , Masculino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogênese/genética , Diferenciação Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismoRESUMO
The processes of self-renewal and differentiation of germ cells are crucial to the development of male infertility and germ cell tumors. CG8005 gene is one of the regulatory factors of the testicular germ stem cells in Drosophila melanogaster, and its functional mechanism is still unknown. To explore the biological function(s) of CG8005 gene in the germ cell niche of Drosophila testis, first, the UAS-gal4 system was used to drive the expression of UAS-CG8005 RNAi in Drosophila testicular germ cells and cyst cells. Fertility tests were then performed to determine the fertility rate of male flies. Second, the expression patterns of Vasa, IBI, Zn finger homeodomain 1 (Zfh1), eyes absent (Eya), DE-cad, FasIII and Phospho-Histone H3(PH3), and TUNEL were analyzed by immunofluorescence staining in both control and CG8005 RNAi testes. Lastly, small interfering RNA (siRNA) was used to silence the CG8005 gene expression in Drosophila S2 cells; and PH3 was used to detect the proliferation ability of Drosophila S2 cells in the control group and CG8005 siRNA group. Apoptosis of Drosophila S2 cells was analyzed with TUNEL and flow cytometry. To observe the relative expression of the spliceosome, the mRNA levels of the spliceosome subunits were detected by fluorescence quantitative RT-PCR. As compared with the control group, the results showed that deletion of the CG8005 gene in the germ cells and cyst cells of the testis reduced or even completely abolished the fertility of male fruit flies. In addition, nos-gal4 driven UAS-CG8005 RNAi led to loss of fusomes and reduce the proliferative ability of germ cells. Noticeably, tj-gal4-directed UAS-CG8005 RNAi knockdown of CG8005 gene in the testis led to germ cell tumor development. Knockdown of CG8005 gene in Drosophila S2 cells resulted in increase in apoptosis and inhibition of proliferation. Further, the silencing of the CG8005 gene in Drosophila S2 cells caused increases in the mRNA levels of the spliceosome subunits. Hence, CG8005 gene is essential for the self-renewal and differentiation of germ cells in Drosophila testis. Its deletion may lead to restricted germ cell survival and the formation of germ cell-like tumors. CG8005 gene can participate in the regulation of proliferation and apoptosis of Drosophila S2 cells, which is essential for the maintenance of cell life, and might competitively regulate the mRNA levels of spliceosome subunits.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Testículo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Germinativas , Masculino , Testículo/fisiologiaRESUMO
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
RESUMO
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Assuntos
Cromatina , Células-Tronco Embrionárias , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , CamundongosRESUMO
Continuity of spermatogenesis in mammals is underpinned by spermatogenic (also called spermatogonial) stem cells (SSCs) that self-renew and differentiate into sperm that pass on genetic information to the next generation. Despite the fundamental role of SSCs, the mechanisms underlying SSC homeostasis are only partly understood. During homeostasis, the stem cell pool remains constant while differentiating cells are continually produced to replenish the lost differentiated cells. One of the outstanding questions here is how self-renewal and differentiation of SSCs are balanced to achieve a constant self-renewing pool. In this review, we shed light on the regulatory mechanism of SSC homeostasis, with focus on the recently proposed mitogen competition model in a facultative (or open) niche microenvironment.
Assuntos
Células-Tronco Germinativas Adultas , Mitógenos , Células-Tronco Germinativas Adultas/fisiologia , Animais , Diferenciação Celular , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mamíferos , Espermatogênese/genética , Espermatogônias , Células-Tronco/fisiologiaRESUMO
Enhancing the differentiation potential of human induced pluripotent stem cells (hiPSC) into disease-relevant cell types is instrumental for their widespread application in medicine. Here, we show that hiPSCs downregulated for the signaling modulator GLYPICAN-4 (GPC4) acquire a new biological state characterized by increased hiPSC differentiation capabilities toward ventral midbrain dopaminergic (VMDA) neuron progenitors. This biological trait emerges both in vitro, upon exposing cells to VMDA neuronal differentiation signals, and in vivo, even when transplanting hiPSCs at the extreme conditions of floor-plate stage in rat brains. Moreover, it is compatible with the overall neuronal maturation process toward acquisition of substantia nigra neuron identity. HiPSCs with downregulated GPC4 also retain self-renewal and pluripotency in stemness conditions, in vitro, while losing tumorigenesis in vivo as assessed by flank xenografts. In conclusion, our results highlight GPC4 downregulation as a powerful approach to enhance generation of VMDA neurons. Outcomes may contribute to establish hiPSC lines suitable for translational applications.
Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Glipicanas , Células-Tronco Pluripotentes Induzidas , Animais , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Regulação para Baixo , Glipicanas/genética , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mesencéfalo , Células-Tronco Neurais/citologia , RatosRESUMO
We propose a new concept that human somatic cells can be converted to become male germline stem cells by the defined factors. Here, we demonstrated that the overexpression of DAZL, DAZ2, and BOULE could directly reprogram human Sertoli cells into cells with the characteristics of human spermatogonial stem cells (SSCs), as shown by their similar transcriptomes and proteomics with human SSCs. Significantly, human SSCs derived from human Sertoli cells colonized and proliferated in vivo, and they could differentiate into spermatocytes and haploid spermatids in vitro. Human Sertoli cell-derived SSCs excluded Y chromosome microdeletions and assumed normal chromosomes. Collectively, human somatic cells could be converted directly to human SSCs with the self-renewal and differentiation potentials and high safety. This study is of unusual significance, because it provides an effective approach for reprogramming human somatic cells into male germ cells and offers invaluable male gametes for treating male infertility.
Assuntos
Diferenciação Celular/genética , Autorrenovação Celular/genética , Reprogramação Celular/genética , Proteínas de Ligação a RNA/genética , Células de Sertoli/metabolismo , Espermatogônias/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Haploidia , Humanos , Masculino , Camundongos Nus , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Células de Sertoli/citologia , Espermátides/citologia , Espermátides/metabolismo , Espermatogônias/citologia , Transplante de Células-Tronco/métodos , Transplante HeterólogoRESUMO
Ultraconserved elements (UCEs) show the peculiar feature to retain extended perfect sequence identity among human, mouse, and rat genomes. Most of them are transcribed and represent a new family of long non-coding RNAs (lncRNAs), the transcribed UCEs (T-UCEs). Despite their involvement in human cancer, the physiological role of T-UCEs is still unknown. Here, we identify a lncRNA containing the uc.170+, named T-UCstem1, and provide in vitro and in vivo evidence that it plays essential roles in embryonic stem cells (ESCs) by modulating cytoplasmic miRNA levels and preserving transcriptional dynamics. Specifically, while T-UCstem1::miR-9 cytoplasmic interplay regulates ESC proliferation by reducing miR-9 levels, nuclear T-UCstem1 maintains ESC self-renewal and transcriptional identity by stabilizing polycomb repressive complex 2 on bivalent domains. Altogether, our findings provide unprecedented evidence that T-UCEs regulate physiological cellular functions and point to an essential role of T-UCstem1 in preserving ESC identity.
Assuntos
Sequência Conservada/genética , Células-Tronco Embrionárias/fisiologia , RNA Longo não Codificante/genética , Animais , Proliferação de Células/genética , Citoplasma/fisiologia , Humanos , Camundongos , MicroRNAs/genética , Complexo Repressor Polycomb 2/genética , Ratos , Transcrição Gênica/genéticaRESUMO
Sequence databases and transcriptome-wide mapping have revealed different reversible and dynamic chemical modifications of the nitrogen bases of RNA molecules. Modifications occur in coding RNAs and noncoding-RNAs post-transcriptionally and they can influence the RNA structure, metabolism, and function. The result is the expansion of the variety of the transcriptome. In fact, depending on the type of modification, RNA molecules enter into a specific program exerting the role of the player or/and the target in biological and pathological processes. Many research groups are exploring the role of RNA modifications (alias epitranscriptome) in cell proliferation, survival, and in more specialized activities. More recently, the role of RNA modifications has been also explored in stem cell biology. Our understanding in this context is still in its infancy. Available evidence addresses the role of RNA modifications in self-renewal, commitment, and differentiation processes of stem cells. In this review, we will focus on five epitranscriptomic marks: N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, Pseudouridine (Ψ) and Adenosine-to-Inosine editing. We will provide insights into the function and the distribution of these chemical modifications in coding RNAs and noncoding-RNAs. Mainly, we will emphasize the role of epitranscriptomic mechanisms in the biology of naïve, primed, embryonic, adult, and cancer stem cells.
RESUMO
De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.
Assuntos
Adipócitos/metabolismo , Células da Medula Óssea/metabolismo , Craniossinostoses/genética , Deficiência Intelectual/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteínas Repressoras/genética , Adipócitos/patologia , Animais , Células da Medula Óssea/patologia , Diferenciação Celular , Proliferação de Células , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Modelos Animais de Doenças , Expressão Gênica , Teste de Complementação Genética , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Cultura Primária de Células , Proteínas Repressoras/deficiência , Análise de Sequência de RNA , Transdução GenéticaRESUMO
Akt signaling regulates many cellular functions that are essential for the proper balance between self-renewal and differentiation of tissue-specific and embryonic stem cells (SCs). However, the roles of Akt and its downstream signaling in SC regulation are rather complex, as Akt activation can either promote SC self-renewal or depletion in a context-dependent manner. In this review we have evidenced three "modes" of Akt-dependent SC regulation, which can be exemplified by three different SC types. In particular, we will discuss: 1) the integration of Akt signaling within the "core" SC signaling circuitry in the maintenance of SC self-renewal and pluripotency (embryonic SCs); 2) quantitative changes in Akt signaling in SC metabolic activity and exit from quiescence (hematopoietic SCs); 3) qualitative changes of Akt signaling in SC regulation: signaling compartment-talization and isoform-specific functions of Akt proteins in SC self-renewal and differentiation (limbal-corneal keratinocyte SCs). These diverse modes of action are not to be intended as mutually exclusive. Rather, it is likely that Akt proteins participate with multiple parallel mechanisms to regulation of the same SC type. We propose that under specific circumstances dictated by distinct developmental stages, differentiation programs or tissue culture conditions, one mode of Akt action prevails over the others in determining SC fates.