Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(Suppl 3): 103, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641585

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is a devastating disease that destroys memory and other cognitive functions. There has been an increasing research effort to prevent and treat AD. In the US, two major data sharing resources for AD research are the National Alzheimer's Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI); Additionally, the National Institutes of Health (NIH) Common Data Elements (CDE) Repository has been developed to facilitate data sharing and improve the interoperability among data sets in various disease research areas. METHOD: To better understand how AD-related data elements in these resources are interoperable with each other, we leverage different representation models to map data elements from different resources: NACC to ADNI, NACC to NIH CDE, and ADNI to NIH CDE. We explore bag-of-words based and word embeddings based models (Word2Vec and BioWordVec) to perform the data element mappings in these resources. RESULTS: The data dictionaries downloaded on November 23, 2021 contain 1,195 data elements in NACC, 13,918 in ADNI, and 27,213 in NIH CDE Repository. Data element preprocessing reduced the numbers of NACC and ADNI data elements for mapping to 1,099 and 7,584 respectively. Manual evaluation of the mapping results showed that the bag-of-words based approach achieved the best precision, while the BioWordVec based approach attained the best recall. In total, the three approaches mapped 175 out of 1,099 (15.92%) NACC data elements to ADNI; 107 out of 1,099 (9.74%) NACC data elements to NIH CDE; and 171 out of 7,584 (2.25%) ADNI data elements to NIH CDE. CONCLUSIONS: The bag-of-words based and word embeddings based approaches showed promise in mapping AD-related data elements between different resources. Although the mapping approaches need further improvement, our result indicates that there is a critical need to standardize CDEs across these valuable AD research resources in order to maximize the discoveries regarding AD pathophysiology, diagnosis, and treatment that can be gleaned from them.


Assuntos
Doença de Alzheimer , Estados Unidos/epidemiologia , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Elementos de Dados Comuns , Neuroimagem , National Institutes of Health (U.S.)
2.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236689

RESUMO

The shop floor or factory floor is the area inside a factory where manufacturing production is executed. The digitalisation of this area has been increasing in the last few years, introducing the Digital Twin (DT) and the Industry 4.0 concepts. A DT is the digital representation of a real object or an entire system. A DT includes a high diversity of components from different vendors that need to interact with each other efficiently. In most cases, the development of standards and protocols does not consider the need to operate with other standards and protocols, causing interoperability issues. Transducers (sensors and actuators) use the communication layer to exchange information with digital contra parts, and for this reason, the communication layer is one of the most relevant aspects of development. This paper covers DT development, going from the physical to the visualisation layer. The reference architecture models, standards, and protocols focus on interoperability to reach a syntactic level of communication between the IEEE 1451 and the IEC 61499 standards. A semantic communication layer connects transducer devices to the digital representation, achieving a semantic level of interoperability. This communication layer adds semantics to the communication process, allowing the development of an interoperable DT based on the IEEE 1451 standards. The DT presented reaches the syntactic and semantic levels of interoperability, allowing the monitoring and visualisation of a prototype system.


Assuntos
Semântica
3.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917602

RESUMO

In the era of Industry 4.0, pervasive adoption of communication technologies based on the Internet of Things represents a very strong requirement in several domains. In the smart grid domain, there is the need to overcome one of the main limitations of the current electric grid, allowing the use of heterogeneous devices capable of measuring, monitoring and exchanging information about grid components. For this reason, current literature often presents research activities about enabling internet of things (IoT) in smart grids; in particular, several proposals aim to realize interworking between IoT and smart grid communication standards, allowing exchange of information between IoT devices and the electrical grid components. Semantic interoperability should be achieved in an interworking solution in order to provide a common meaning of the data exchanged by heterogeneous devices, even if they belong to different domains. Until now, semantic interoperability remains an open challenge in the smart grid field. The paper aims to propose a novel solution of interworking between two of the most used communication systems in smart grids and IoT domains, i.e., IEC 61850 and oneM2M, respectively. A semantic interoperability solution is also proposed to be used in the interworking scheme here presented.

4.
BMC Med Inform Decis Mak ; 20(1): 147, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620117

RESUMO

BACKGROUND: Semantic interoperability is essential for improving data quality and sharing. The ISO/IEC 11179 Metadata Registry (MDR) standard has been highlighted as a solution for standardizing and registering clinical data elements (DEs). However, the standard model has both structural and semantic limitations, and the number of DEs continues to increase due to poor term reusability. Semantic types and constraints are lacking for comprehensively describing and evaluating DEs on real-world clinical documents. METHODS: We addressed these limitations by defining three new types of semantic relationship (dependency, composite, and variable) in our previous studies. The present study created new and further extended existing semantic types (hybrid atomic and repeated and dictionary composite common data elements [CDEs]) with four constraints: ordered, operated, required, and dependent. For evaluation, we extracted all atomic and composite CDEs from five major clinical documents from five teaching hospitals in Korea, 14 Fast Healthcare Interoperability Resources (FHIR) resources from FHIR bulk sample data, and MIMIC-III (Medical Information Mart for Intensive Care) demo dataset. Metadata reusability and semantic interoperability in real clinical settings were comprehensively evaluated by applying the CDEs with our extended semantic types and constraints. RESULTS: All of the CDEs (n = 1142) extracted from the 25 clinical documents were successfully integrated with a very high CDE reuse ratio (46.9%) into 586 CDEs (259 atomic and 20 unique composite CDEs), and all of CDEs (n = 238) extracted from the 14 FHIR resources of FHIR bulk sample data were successfully integrated with high CDE reuse ration (59.7%) into 96 CDEs (21 atomic and 28 unique composite CDEs), which improved the semantic integrity and interoperability without any semantic loss. Moreover, the most complex data structures from two CDE projects were successfully encoded with rich semantics and semantic integrity. CONCLUSION: MDR-based extended semantic types and constraints can facilitate comprehensive representation of clinical documents with rich semantics, and improved semantic interoperability without semantic loss.


Assuntos
Elementos de Dados Comuns , Metadados , Sistema de Registros , República da Coreia , Semântica
5.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033027

RESUMO

With the constant growth of Internet of Things (IoT) ecosystems, allowing them to interact transparently has become a major issue for both the research and the software development communities. In this paper we propose a novel approach that builds semantically interoperable ecosystems of IoT devices. The approach provides a SPARQL query-based mechanism to transparently discover and access IoT devices that publish heterogeneous data. The approach was evaluated in order to prove that it provides complete and correct answers without affecting the response time and that it scales linearly in large ecosystems.

6.
BMC Med Inform Decis Mak ; 19(1): 97, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077222

RESUMO

BACKGROUND: Mobile health (MH) technologies including clinical decision support systems (CDSS) provide an efficient method for patient monitoring and treatment. A mobile CDSS is based on real-time sensor data and historical electronic health record (EHR) data. Raw sensor data have no semantics of their own; therefore, a computer system cannot interpret these data automatically. In addition, the interoperability of sensor data and EHR medical data is a challenge. EHR data collected from distributed systems have different structures, semantics, and coding mechanisms. As a result, building a transparent CDSS that can work as a portable plug-and-play component in any existing EHR ecosystem requires a careful design process. Ontology and medical standards support the construction of semantically intelligent CDSSs. METHODS: This paper proposes a comprehensive MH framework with an integrated CDSS capability. This cloud-based system monitors and manages type 1 diabetes mellitus. The efficiency of any CDSS depends mainly on the quality of its knowledge and its semantic interoperability with different data sources. To this end, this paper concentrates on constructing a semantic CDSS based on proposed FASTO ontology. RESULTS: This realistic ontology is able to collect, formalize, integrate, analyze, and manipulate all types of patient data. It provides patients with complete, personalized, and medically intuitive care plans, including insulin regimens, diets, exercises, and education sub-plans. These plans are based on the complete patient profile. In addition, the proposed CDSS provides real-time patient monitoring based on vital signs collected from patients' wireless body area networks. These monitoring include real-time insulin adjustments, mealtime carbohydrate calculations, and exercise recommendations. FASTO integrates the well-known standards of HL7 fast healthcare interoperability resources (FHIR), semantic sensor network (SSN) ontology, basic formal ontology (BFO) 2.0, and clinical practice guidelines. The current version of FASTO includes 9577 classes, 658 object properties, 164 data properties, 460 individuals, and 140 SWRL rules. FASTO is publicly available through the National Center for Biomedical Ontology BioPortal at https://bioportal.bioontology.org/ontologies/FASTO . CONCLUSIONS: The resulting CDSS system can help physicians to monitor more patients efficiently and accurately. In addition, patients in rural areas can depend on the system to manage their diabetes and emergencies.


Assuntos
Ontologias Biológicas , Sistemas de Apoio a Decisões Clínicas , Telemedicina , Redes de Comunicação de Computadores , Registros Eletrônicos de Saúde , Humanos , Armazenamento e Recuperação da Informação , Semântica
7.
BMC Med Inform Decis Mak ; 19(1): 25, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691467

RESUMO

BACKGROUND: Frailty is a common clinical syndrome in ageing population that carries an increased risk for adverse health outcomes including falls, hospitalization, disability, and mortality. As these outcomes affect the health and social care planning, during the last years there is a tendency of investing in monitoring and preventing strategies. Although a number of electronic health record (EHR) systems have been developed, including personalized virtual patient models, there are limited ageing population oriented systems. METHODS: We exploit the openEHR framework for the representation of frailty in ageing population in order to attain semantic interoperability, and we present the methodology for adoption or development of archetypes. We also propose a framework for a one-to-one mapping between openEHR archetypes and a column-family NoSQL database (HBase) aiming at the integration of existing and newly developed archetypes into it. RESULTS: The requirement analysis of our study resulted in the definition of 22 coherent and clinically meaningful parameters for the description of frailty in older adults. The implemented openEHR methodology led to the direct use of 22 archetypes, the modification and reuse of two archetypes, and the development of 28 new archetypes. Additionally, the mapping procedure led to two different HBase tables for the storage of the data. CONCLUSIONS: In this work, an openEHR-based virtual patient model has been designed and integrated into an HBase storage system, exploiting the advantages of the underlying technologies. This framework can serve as a base for the development of a decision support system using the openEHR's Guideline Definition Language in the future.


Assuntos
Envelhecimento , Registros Eletrônicos de Saúde , Fragilidade , Interoperabilidade da Informação em Saúde , Modelos Teóricos , Idoso , Fragilidade/classificação , Humanos , Semântica
8.
Sensors (Basel) ; 19(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623304

RESUMO

Pervasive healthcare services have undergone a great evolution in recent years. The technological development of communication networks, including the Internet, sensor networks, and M2M (Machine-to-Machine) have given rise to new architectures, applications, and standards related to addressing almost all current e-health challenges. Among the standards, the importance of OpenEHR has been recognized, since it enables the separation of medical semantics from data representation of electronic health records. However, it does not meet the requirements related to interoperability of e-health devices in M2M networks, or in the Internet of Things (IoT) scenarios. Moreover, the lack of interoperability hampers the application of new data-processing techniques, such as data mining and online analytical processing, due to the heterogeneity of the data and the sources. This article proposes an Internet of Medical Things (IoMT) platform for pervasive healthcare that ensures interoperability, quality of the detection process, and scalability in an M2M-based architecture, and provides functionalities for the processing of high volumes of data, knowledge extraction, and common healthcare services. The platform uses the semantics described in OpenEHR for both data quality evaluation and standardization of healthcare data stored by the association of IoMT devices and observations defined in OpenEHR. Moreover, it enables the application of big data techniques and online analytic processing (OLAP) through Hadoop Map/Reduce and content-sharing through fast healthcare interoperability resource (FHIR) application programming interfaces (APIs).


Assuntos
Atenção à Saúde/tendências , Registros Eletrônicos de Saúde , Integração de Sistemas , Agregação de Dados , Humanos , Internet , Semântica , Software
9.
Sensors (Basel) ; 19(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654571

RESUMO

All of the objects in the real world are envisioned to be connected and/or represented, through an infrastructure layer, in the virtual world of the Internet, becoming Things with status information. Services are then using the available data from this Internet-of-Things (IoT) for various social and economical benefits which explain its extreme broad usage in very heterogeneous fields. Domain administrations of diverse areas of application developed and deployed their own IoT systems and services following disparate standards and architecture approaches that created a fragmentation of things, infrastructures and services in vertical IoT silos. Coordination and cooperation among IoT systems are the keys to build "smarter" IoT services boosting the benefits magnitude. This article analyses the technical trends of the future IoT world based on the current limitations of the IoT systems and the capability requirements. We propose a hyper-connected IoT framework in which "things" are connected to multiple interdependent services and describe how this framework enables the development of future applications. Moreover, we discuss the major limitations in today's IoT and highlight the required capabilities in the future. We illustrate this global vision with the help of two concrete instances of the hyper-connected IoT in smart cities and autonomous driving scenarios. Finally, we analyse the trends in the number of connected "things" and point out open issues and future challenges. The proposed hyper-connected IoT framework is meant to scale the benefits of IoT from local to global.

10.
BMC Bioinformatics ; 19(1): 183, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801439

RESUMO

BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. RESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. CONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.


Assuntos
Mineração de Dados/métodos , Locos de Características Quantitativas , Software , Algoritmos , Gráficos por Computador , Bases de Dados Factuais , Solanum lycopersicum/genética , Publicações , Semântica , Solanum tuberosum/genética
11.
BMC Med Inform Decis Mak ; 18(Suppl 1): 15, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29589572

RESUMO

BACKGROUND: Clinical data registry is designed to collect and manage information about the practices and outcomes of a patient population for improving the quality and safety of care and facilitating novel researches. Semantic interoperability is a challenge when integrating the data from more than one clinical data registry. The openEHR approach can represent the information and knowledge semantics by multi-level modeling, and it advocates the use of collaborative modeling to facilitate reusing existing archetypes with consistent semantics so as to be a potential solution to improve the semantic interoperability. METHODS: This paper proposed an openEHR based approach to improve the semantic interoperability of clinical data registry. The approach consists of five steps: clinical data registry meta-information collection, data element definition, archetype modeling, template editing, and implementation. Through collaborative modeling and maximum reusing of existing archetype at the archetype modeling step, the approach can improve semantic interoperability. To verify the feasibility of the approach, this paper conducted a case study of building a Coronary Computed Tomography Angiography (CCTA) registry that can interoperate with an existing Electronic Health Record (EHR) system. RESULTS: The CCTA registry includes 183 data elements, which involves 20 archetypes. A total number of 45 CCTA data elements and EHR data elements have semantic overlap. Among them, 38 (84%) CCTA data elements can be found in the 10 reused EHR archetypes. These corresponding clinical data can be collected from the EHR system directly without transformation. The other 7 (16%) CCTA data elements correspond to one coarse-grained EHR data elements, and these clinical data can be collected with mapping rules. The results show that the approach can improve semantic interoperability of clinical data registry. CONCLUSIONS: Using an openEHR based approach to develop clinical data registry can improve the semantic interoperability. Meanwhile, some challenges for broader semantic interoperability are identified, including domain experts' involvement, archetype sharing and reusing, and archetype semantic mapping. Collaborative modeling, easy-to-use tools, and semantic relationship establishment are potential solutions for these challenges. This study provides some experience and insight about clinical modeling and clinical data registry development.


Assuntos
Registros Eletrônicos de Saúde , Interoperabilidade da Informação em Saúde , Sistema de Registros , Humanos , Semântica
12.
BMC Med Inform Decis Mak ; 18(Suppl 5): 112, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526595

RESUMO

BACKGROUND: To realize semantic interoperability for Primary Health Information System (PHIS), this study analyzes and applies existing health information data standards in China. This research aims to establish a Primary Health Information Standard System (PHISS), and achieve the semantic level interoperability and application of primary health information. METHODS: First, the PHISS in accordance with the structural standards of national information standards system in China was constructed. Second, application of semantic interoperability level with reference to the interoperability model was standardized. Thirdly, referring to the data element model, PHIS data element dictionary with good interoperability is developed by standardizing data element attributes of identifiers, names, definitions and permissible value. Fourthly, based on PHIS data element dictionary, PHIS dataset is developed following the relevant rules for health information datasets. RESULTS: PHISS is composed of basic class standards, data class standards, technical class standards, security and privacy class standards, management class standards. In this study, we reorganized the data class standards that meet the requirements of PHIS, also develops and adds PHIS data element, PHIS data element dictionary and PHIS dataset. PHIS data element dictionary includes 16 parts and PHIS dataset includes 22 parts, which satisfies the data standardization requirements of PHIS. CONCLUSIONS: The establishment of the PHISS can meet the needs for the interconnection of the residents' basic health service information and realize the semantic level interoperability of various information services. The key steps of this method are based on semantic interoperability. Relevant data elements and datasets with semantic interoperability are selected. Moreover, an information standard system is constructed, and the information standardization requirements of the PHIS are met.


Assuntos
Interoperabilidade da Informação em Saúde , Sistemas de Informação em Saúde , Prontuários Médicos , China , Interoperabilidade da Informação em Saúde/normas , Sistemas de Informação em Saúde/normas , Humanos , Semântica
13.
Sensors (Basel) ; 18(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970856

RESUMO

As the ideas and technologies behind the Internet of Things (IoT) take root, a vast array of new possibilities and applications is emerging with the significantly increased number of devices connected to the Internet. Moreover, we are also witnessing the fast emergence of location-based services with an abundant number of localization technologies and solutions with varying capabilities and limitations. We believe that, at this moment in time, the successful integration of these two diverse technologies is mutually beneficial and even essential for both fields. IoT is one of the major fields that can benefit from localization services, and so, the integration of localization systems in the IoT ecosystem would enable numerous new IoT applications. Further, the use of standardized IoT architectures, interaction and information models will permit multiple localization systems to communicate and interoperate with each other in order to obtain better context information and resolve positioning errors or conflicts. Therefore, in this work, we investigate the semantic interoperation and integration of positioning systems in order to obtain the full potential of the localization ecosystem in the context of IoT. Additionally, we also validate the proposed design by means of an industrial case study, which targets fully-automated warehouses utilizing location-aware and interconnected IoT products and systems.

14.
J Biomed Inform ; 76: 124-137, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29113934

RESUMO

Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation.


Assuntos
Registros Eletrônicos de Saúde , Modelos Teóricos , Artefatos , Humanos , Terminologia como Assunto
15.
BMC Med Inform Decis Mak ; 17(1): 120, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806953

RESUMO

BACKGROUND: Standards and technical specifications have been developed to define how the information contained in Electronic Health Records (EHRs) should be structured, semantically described, and communicated. Current trends rely on differentiating the representation of data instances from the definition of clinical information models. The dual model approach, which combines a reference model (RM) and a clinical information model (CIM), sets in practice this software design pattern. The most recent initiative, proposed by HL7, is called Fast Health Interoperability Resources (FHIR). The aim of our study was to investigate the feasibility of applying the FHIR standard to modeling and exposing EHR data of the Georges Pompidou European Hospital (HEGP) integrating biology and the bedside (i2b2) clinical data warehouse (CDW). RESULTS: We implemented a FHIR server over i2b2 to expose EHR data in relation with five FHIR resources: DiagnosisReport, MedicationOrder, Patient, Encounter, and Medication. The architecture of the server combines a Data Access Object design pattern and FHIR resource providers, implemented using the Java HAPI FHIR API. Two types of queries were tested: query type #1 requests the server to display DiagnosticReport resources, for which the diagnosis code is equal to a given ICD-10 code. A total of 80 DiagnosticReport resources, corresponding to 36 patients, were displayed. Query type #2, requests the server to display MedicationOrder, for which the FHIR Medication identification code is equal to a given code expressed in a French coding system. A total of 503 MedicationOrder resources, corresponding to 290 patients, were displayed. Results were validated by manually comparing the results of each request to the results displayed by an ad-hoc SQL query. CONCLUSION: We showed the feasibility of implementing a Java layer over the i2b2 database model to expose data of the CDW as a set of FHIR resources. An important part of this work was the structural and semantic mapping between the i2b2 model and the FHIR RM. To accomplish this, developers must manually browse the specifications of the FHIR standard. Our source code is freely available and can be adapted for use in other i2b2 sites.


Assuntos
Data Warehousing/normas , Sistemas de Gerenciamento de Base de Dados/normas , Registros Eletrônicos de Saúde/normas , Interoperabilidade da Informação em Saúde/normas , Hospitais de Ensino/normas , Registros Eletrônicos de Saúde/organização & administração , Nível Sete de Saúde , Humanos
16.
J Biomed Inform ; 60: 224-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26911524

RESUMO

OBJECTIVE: To design a new semantically interoperable clinical repository, based on ontologies, conforming to CEN/ISO 13606 standard. MATERIALS AND METHODS: The approach followed is to extend OntoCRF, a framework for the development of clinical repositories based on ontologies. The meta-model of OntoCRF has been extended by incorporating an OWL model integrating CEN/ISO 13606, ISO 21090 and SNOMED CT structure. RESULTS: This approach has demonstrated a complete evaluation cycle involving the creation of the meta-model in OWL format, the creation of a simple test application, and the communication of standardized extracts to another organization. DISCUSSION: Using a CEN/ISO 13606 based system, an indefinite number of archetypes can be merged (and reused) to build new applications. Our approach, based on the use of ontologies, maintains data storage independent of content specification. With this approach, relational technology can be used for storage, maintaining extensibility capabilities. CONCLUSIONS: The present work demonstrates that it is possible to build a native CEN/ISO 13606 repository for the storage of clinical data. We have demonstrated semantic interoperability of clinical information using CEN/ISO 13606 extracts.


Assuntos
Ontologias Biológicas , Registros Eletrônicos de Saúde/normas , Armazenamento e Recuperação da Informação , Algoritmos , Controle de Formulários e Registros/normas , Humanos , Internet , Linguagens de Programação , Semântica , Software , Systematized Nomenclature of Medicine , Integração de Sistemas
17.
J Biomed Inform ; 63: 307-324, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27568295

RESUMO

PURPOSE: Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. METHODS: First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. RESULTS: Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by using a knowledge base which we have constructed by interviews with domain experts, (ii) translation of initially CP ADL archetypes into CP OWL-DL archetypes, (iii) creation of an ontological source which we can use to annotate obtained archetypes and (vi) enrichment and supply of the ontological source and integration of semantic relations by providing hence fueling the ontology with new concepts, ensuring consistency and eliminating ambiguity between concepts. CONCLUSIONS: The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems.


Assuntos
Paralisia Cerebral , Registros Eletrônicos de Saúde , Semântica , Humanos , Lactente , Idioma , Registro Médico Coordenado
18.
J Biomed Inform ; 62: 243-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401856

RESUMO

BACKGROUND: The high costs involved in the development of Clinical Decision Support Systems (CDSS) make it necessary to share their functionality across different systems and organizations. Service Oriented Architectures (SOA) have been proposed to allow reusing CDSS by encapsulating them in a Web service. However, strong barriers in sharing CDS functionality are still present as a consequence of lack of expressiveness of services' interfaces. Linked Services are the evolution of the Semantic Web Services paradigm to process Linked Data. They aim to provide semantic descriptions over SOA implementations to overcome the limitations derived from the syntactic nature of Web services technologies. OBJECTIVE: To facilitate the publication, discovery and interoperability of CDS services by evolving them into Linked Services that expose their interfaces as Linked Data. MATERIALS AND METHODS: We developed methods and models to enhance CDS SOA as Linked Services that define a rich semantic layer based on machine interpretable ontologies that powers their interoperability and reuse. These ontologies provided unambiguous descriptions of CDS services properties to expose them to the Web of Data. RESULTS: We developed models compliant with Linked Data principles to create a semantic representation of the components that compose CDS services. To evaluate our approach we implemented a set of CDS Linked Services using a Web service definition ontology. The definitions of Web services were linked to the models developed in order to attach unambiguous semantics to the service components. All models were bound to SNOMED-CT and public ontologies (e.g. Dublin Core) in order to count on a lingua franca to explore them. Discovery and analysis of CDS services based on machine interpretable models was performed reasoning over the ontologies built. DISCUSSION: Linked Services can be used effectively to expose CDS services to the Web of Data by building on current CDS standards. This allows building shared Linked Knowledge Bases to provide machine interpretable semantics to the CDS service description alleviating the challenges on interoperability and reuse. Linked Services allow for building 'digital libraries' of distributed CDS services that can be hosted and maintained in different organizations.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Bases de Conhecimento , Descoberta do Conhecimento , Publicações , Web Semântica , Humanos , Editoração
19.
BMC Med Inform Decis Mak ; 16(1): 137, 2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770769

RESUMO

BACKGROUND: Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. METHODS: This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. RESULTS: A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. CONCLUSION: Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.


Assuntos
Registros Eletrônicos de Saúde , Aplicações da Informática Médica , Modelos Teóricos , Humanos
20.
Sensors (Basel) ; 16(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27347965

RESUMO

Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA