Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 87(2): 230-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121260

RESUMO

The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.


Assuntos
Células/ultraestrutura , Imageamento Tridimensional/métodos , Arabidopsis/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Software , Análise Espacial , Frações Subcelulares/ultraestrutura
2.
Comput Biol Med ; 178: 108689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875907

RESUMO

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.


Assuntos
Modelos Anatômicos , Modelos Estatísticos , Couro Cabeludo , Couro Cabeludo/anatomia & histologia , Neuronavegação , Pontos de Referência Anatômicos , Tecnologia Biomédica , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Humanos , Masculino , Feminino
3.
Comput Biol Med ; 158: 106806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019009

RESUMO

Minimally invasive repair of pectus excavatum (MIRPE) is an effective method for correcting pectus excavatum (PE), a congenital chest wall deformity characterized by concave depression of the sternum. In MIRPE, a long, thin, curved stainless plate (implant) is placed across the thoracic cage to correct the deformity. However, the implant curvature is difficult to accurately determine during the procedure. This implant depends on the surgeon's expert knowledge and experience and lacks objective criteria. Moreover, tedious manual input by surgeons is required to estimate the implant shape. In this study, a novel three-step end-to-end automatic framework is proposed to determine the implant shape during preoperative planning: (1) The deepest depression point (DDP) in the sagittal plane of the patient's CT volume is automatically determined using Sparse R-CNN-R101, and the axial slice containing the point is extracted. (2) Cascade Mask R-CNN-X101 segments the anterior intercostal gristle of the pectus, sternum and rib in the axial slice, and the contour is extracted to generate the PE point set. (3) Robust shape registration is performed to match the PE shape with a healthy thoracic cage, which is then utilized to generate the implant shape. The framework was evaluated on a CT dataset of 90 PE patients and 30 healthy children. The experimental results show that the average error of the DDP extraction was 5.83 mm. The end-to-end output of our framework was compared with surgical outcomes of professional surgeons to clinically validate the effectiveness of our method. The results indicate that the root mean square error (RMSE) between the midline of the real implant and our framework output was less than 2 mm.


Assuntos
Aprendizado Profundo , Tórax em Funil , Cirurgiões , Criança , Humanos , Tórax em Funil/diagnóstico por imagem , Tórax em Funil/cirurgia , Esterno/cirurgia , Próteses e Implantes , Procedimentos Cirúrgicos Minimamente Invasivos , Estudos Retrospectivos
4.
Comput Methods Programs Biomed ; 210: 106353, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500142

RESUMO

BACKGROUND AND OBJECTIVE: Capturing the population variability of bone properties is of paramount importance to biomedical engineering. The aim of the present paper is to describe variability and correlations in bone mineral density with a spatial random field inferred from routine computed tomography data. METHODS: Random fields were simulated by transforming pairwise uncorrelated Gaussian random variables into correlated variables through the spectral decomposition of an age-detrended correlation matrix. The validity of the random field model was demonstrated in the spatiotemporal analysis of bone mineral density. The similarity between the computed tomography samples and those generated via random fields was analyzed with the energy distance metric. RESULTS: The random field of bone mineral density was found to be approximately Gaussian/slightly left-skewed/strongly right-skewed at various locations. However, average bone density could be simulated well with the proposed Gaussian random field for which the energy distance, i.e., a measure that quantifies discrepancies between two distribution functions, is convergent with respect to the number of correlation eigenpairs. CONCLUSIONS: The proposed random field model allows the enhancement of computational biomechanical models with variability in bone mineral density, which could increase the usability of the model and provides a step forward in in-silico medicine.


Assuntos
Densidade Óssea , Osso e Ossos , Tomografia Computadorizada por Raios X
5.
Artigo em Inglês | MEDLINE | ID: mdl-37283944

RESUMO

Shape analysis is an important and powerful tool in a wide variety of medical applications. Many shape analysis techniques require shape representations which are in correspondence. Unfortunately, popular techniques for generating shape representations do not handle objects with complex geometry or topology well, and those that do are not typically readily available for non-expert users. We describe a method for generating correspondences across a population of objects using a given template. We also describe its implementation and distribution via SlicerSALT, an open-source platform for making powerful shape analysis techniques more widely available and usable. Finally, we show results of this implementation on mouse femur data.

6.
Proc IEEE Int Symp Biomed Imaging ; 2018: 1010-1013, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29973974

RESUMO

Statistical shape analysis captures the geometric properties of a given set of shapes, obtained from medical images, by means of statistical methods. Orthognathic surgery is a type of craniofacial surgery that is aimed at correcting severe skeletal deformities in the mandible and maxilla. Methods assuming spherical topology cannot represent the class of anatomical structures exhibiting complex geometries and topologies, including the mandible. In this paper we propose methodology based on non-rigid deformations of 3D geometries to be applied to objects with thin, complex structures. We are able to accurately and quantitatively characterize bone healing at the osteotomy site as well as condylar remodeling for three orthognathic surgery cases, demonstrating the effectiveness of the proposed methodology.

7.
Med Image Anal ; 23(1): 15-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25910684

RESUMO

We present an algorithm for volumetric registration of 3D solid shapes. In comparison to previous work on image based registration, our technique achieves higher efficiency by leveraging a template tetrahedral mesh. In contrast to point- and surface-based registration techniques, our method better captures volumetric nature of the data, such as bone thickness. We apply our algorithm to study pathological skull deformities caused by a particular condition, i.e., craniosynostosis. The input to our system is a pair of volumetric 3D shapes: a tetrahedral mesh and a voxelized object represented by a set of voxel cells segmented from computed tomography (CT) scans. Our general framework first performs a global registration and then launches a novel elastic registration process that uses as much volumetric information as possible while deforming the generic template tetrahedral mesh of a healthy human skull towards the underlying geometry of the voxel cells. Both data are high-resolution and differ by large non-rigid deformations. Our fully-automatic solution is fast and accurate, as compared with the state of the arts from the reconstruction and medical image registration fields. We use the resulting registration to match the ground-truth surfaces extracted from the medical data as well as to quantify the severity of the anatomical deformity.


Assuntos
Algoritmos , Craniossinostoses/diagnóstico por imagem , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Lactente
8.
Proc IEEE Int Symp Biomed Imaging ; 2015: 1402-1406, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26413211

RESUMO

We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.

9.
Worm ; 3(4): e982437, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26435884

RESUMO

The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA