Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 239(Pt 1): 117306, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797669

RESUMO

Firefighters experience exposures to carcinogenic and mutagenic substances, including polycyclic aromatic hydrocarbons (PAHs). Silicone wristbands (SWBs) have been used as passive samplers to assess firefighters' exposures over the course of a shift but their utility in measuring short term exposures, source of exposure, and correlations with other measurements of exposure have not yet been investigated. In this study, SWBs were used to measure the concentrations of 16 priority PAHs inside and outside of firefighters' personal protective equipment (PPE) while firefighting. SWBs were placed on the wrist and jacket of 20 firefighters conducting live fire training. Correlations were made with matching data from a sister project that measured urinary concentrations of PAH metabolites and PAH concentrations from personal air samples from the same participants. Naphthalene, acenaphthylene and phenanthrene had the highest geometric mean concentrations in both jacket and wrist SWB, with 1040, 320, 180 ng/g SWB for jacket and 55.0, 4.9, and 6.0 ng/g SWB for wrist, respectively. Ratios of concentrations between the jacket and wrist SWBs were calculated as worker protection factors (WPFs) and averaged 40.1 for total PAHs and ranged from 2.8 to 214 for individual PAHs, similar to previous studies. Several significant correlations were observed between PAHs in jacket SWBs and air samples (e.g., total and low molecular weight PAHs, r = 0.55 and 0.59, p < 0.05, respectively). A few correlations were found between PAHs from SWBs worn on the wrist and jacket, and urinary concentrations of PAH metabolites and PAH concentrations in air samples. The ability of the SWBs to accurately capture exposures to various PAHs was likely influenced by short sampling time, high temperatures, and high turbulence. Future work should further examine the limitations of SWBs for PAH exposures in firefighting, and other extreme environments.


Assuntos
Bombeiros , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Carcinógenos , Mutagênicos , Equipamento de Proteção Individual
2.
Environ Res ; 224: 115526, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813067

RESUMO

Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.


Assuntos
Hidrocarbonetos Clorados , Humanos , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental/métodos , Parafina/análise , Projetos Piloto , Silicones , China
3.
Environ Res ; 217: 114867, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423664

RESUMO

Hurricane Harvey was a category four storm that induced catastrophic flooding in the Houston metropolitan area. Following the hurricane there was increased concern regarding chemical exposures due to damage caused by flood waters and emergency excess emissions from industrial facilities. This study utilized personal passive samplers in the form of silicone wristbands in Houston, TX to both assess chemical exposure to endocrine disrupting chemicals (EDCs) immediately after the hurricane and determine participant characteristics associated with higher concentrations of exposure. Participants from the Houston-3H cohort (n = 172) wore a wristband for seven days and completed a questionnaire to determine various flood-related and demographic variables. Bivariate and multivariate analysis indicated that living in an area with a high Area Deprivation Index (ADI) (indicative of low socioeconomic status), identifying as Black/African American or Latino, and living in the Houston neighborhoods of Baytown and East Houston were associated with increased exposure to EDCs. These results provide evidence of racial/ethnic and socioeconomic injustices in exposure to EDCs in the Houston Metropolitan Area. Since the multiple regression models conducted did not fully explain exposure (0.047 < R2 < 0.34), more research is needed on the direct sources of EDCs within this area to create effective exposure mitigation strategies.


Assuntos
Tempestades Ciclônicas , Disruptores Endócrinos , Humanos , Inundações , Hispânico ou Latino , Inquéritos e Questionários
4.
BMC Public Health ; 23(1): 1732, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674147

RESUMO

BACKGROUND: As exposure assessment has shifted towards community-engaged research there has been an increasing trend towards reporting results to participants. Reports aim to increase environmental health literacy, but this can be challenging due to the many unknowns regarding chemical exposure and human health effects. This includes when reports encompass a wide-range of chemicals, limited reference or health standards exist for those chemicals, and/or incompatibility of data generated from exposure assessment tools with published reference values (e.g., comparing a wristband concentration to an oral reference dose). METHODS: Houston Hurricane Harvey Health (Houston-3H) participants wore silicone wristbands that were analyzed for 1,530 organic compounds at two time-points surrounding Hurricane Harvey. Three focus groups were conducted in separate neighborhoods in the Houston metropolitan area to evaluate response to prototype community and individual level report-backs. Participants (n = 31) evaluated prototype drafts using Likert scales and discussion prompts. Focus groups were audio-recorded, and transcripts were analyzed using a qualitative data analysis program for common themes, and quantitative data (ranking, Likert scales) were statistically analyzed. RESULTS: Four main themes emerged from analysis of the transcripts: (1) views on the report layout; (2) expression of concern over how chemicals might impact their individual or community health; (3) participants emotional response towards the researchers; and (4) participants ability to comprehend and evaluate environmental health information. Evaluation of the report and key concerns differed across the three focus groups. However, there was agreement amongst the focus groups about the desire to obtain personal exposure results despite the uncertainty of what the participant results meant. CONCLUSIONS: The report-back of research results (RBRR) for community and individual level exposure assessment data should keep the following key principles in mind: materials should be accessible (language level, data visualization options, graph literacy), identify known information vs unknown (e.g., provide context for what exposure assessment data means, acknowledge lack of current health standards or guidelines), recognize and respect community knowledge and history, and set participant expectations for what they can expect from the report.


Assuntos
Tempestades Ciclônicas , Humanos , Retroalimentação , Emoções , Saúde Ambiental , Grupos Focais
5.
Environ Sci Technol ; 56(5): 3193-3203, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156803

RESUMO

Personal exposure of nail salon workers to 10 phthalates and 19 organophosphate esters (OPEs) was assessed in 18 nail salons in Toronto, Canada. Active air samplers (n = 60) and silicone passive samplers, including brooches (n = 58) and wristbands (n = 60), were worn by 45 nail salon workers for ∼8 working hours. Diethyl phthalate (median = 471 ng m-3) and diisobutyl phthalate (337 ng m-3) were highest in active air samplers. Most abundant OPEs in active air samplers were tris(2-chloroisopropyl)phosphate or TCIPP (303 ng m-3) and tris(2-chloroethyl)phosphate or TCEP (139 ng m-3), which are used as flame retardants but have not been reported for use in personal care products or nail salon accessories. Air concentrations of phthalates and OPEs were not associated with the number of services performed during each worker's shift. Within a single work shift, a combined total of 16 (55%) phthalates and OPEs were detected on passive silicone brooches; 19 (66%) were detected on wristbands. Levels of tris(2-chloroisopropyl)phosphate, tris(1,3-dichloro-2-propyl)phosphate or TDCIPP, and triphenyl phosphate or TPhP wristbands were significantly higher than those worn by e-waste workers. Significant correlations (p < 0.05) were found between the levels of some phthalates and OPEs in silicone brooches and wristbands versus those in active air samplers. Stronger correlations were observed between active air samplers versus brooches than wristbands. Sampler characteristics, personal characteristics, and chemical emission sources are the three main factors proposed to influence the use of passive samplers for measuring semi-volatile organic compound exposure.


Assuntos
Retardadores de Chama , Exposição Ocupacional , Canadá , Monitoramento Ambiental , Ésteres , Retardadores de Chama/análise , Humanos , Organofosfatos , Fosfatos , Plastificantes , Silicones/química
6.
Environ Res ; 214(Pt 3): 113981, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952739

RESUMO

Silicone wristbands act as passive environmental samplers capable of detecting and measuring concentrations of a variety of chemicals. They offer a noninvasive method to collect complex exposure data in large-scale epidemiological studies. We evaluated the inter-method reliability of silicone wristbands and urinary biomarkers in the New Hampshire Birth Cohort Study. A subset of study participants (n = 96) provided a urine sample and wore a silicone wristband for 7 days at approximately 12 gestational weeks. Women were instructed to wear the wristbands during all their normal activities. Concentrations of urinary compounds and metabolites in the urine and parent compounds in wristbands were compared. High detection rates were observed for triphenyl phosphate (76.0%) and benzophenone (78.1%) in wristbands, although the distribution of corresponding urinary concentrations of chemicals did not differ according to whether chemicals were detected or not detected in wristbands. While detected among only 8.3% of wristbands, median urinary triclosan concentrations were higher among those with triclosan detected in wristbands (9.04 ng/mL) than without (0.16 ng/mL). For most chemicals slight to fair agreement was observed across exposure assessment methods, potentially due to low rates of detection in the wristbands for chemicals where observed urinary concentrations were relatively low as compared to background concentrations in the general population. Our findings support the growing body of research in support of deploying silicone wristbands as an important exposure assessment tool.


Assuntos
Expossoma , Retardadores de Chama , Triclosan , Biomarcadores , Estudos de Coortes , Monitoramento Ambiental/métodos , Feminino , Retardadores de Chama/análise , Humanos , Gravidez , Reprodutibilidade dos Testes , Silicones/química
7.
BMC Public Health ; 19(1): 854, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262274

RESUMO

BACKGROUND: A challenge in environmental health research is collecting robust data sets to facilitate comparisons between personal chemical exposures, the environment and health outcomes. To address this challenge, the Exposure, Location and lung Function (ELF) tool was designed in collaboration with communities that share environmental health concerns. These concerns centered on respiratory health and ambient air quality. The ELF collects exposure to polycyclic aromatic hydrocarbons (PAHs), given their association with diminished lung function. Here, we describe the ELF as a novel environmental health assessment tool. METHODS: The ELF tool collects chemical exposure for 62 PAHs using passive sampling silicone wristbands, geospatial location data and respiratory lung function measures using a paired hand-held spirometer. The ELF was tested by 10 individuals with mild to moderate asthma for 7 days. Participants wore a wristband each day to collect PAH exposure, carried a cell phone, and performed spirometry daily to collect respiratory health measures. Location data was gathered using the geospatial positioning system technology in an Android cell-phone. RESULTS: We detected and quantified 31 PAHs across the study population. PAH exposure data showed spatial and temporal sensitivity within and between participants. Location data was used with existing datasets such as the Toxics Release Inventory and the National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System. Respiratory health outcomes were validated using criteria from the American Thoracic Society with 94% of participant data meeting standards. Finally, the ELF was used with a high degree of compliance (> 90%) by community members. CONCLUSIONS: The ELF is a novel environmental health assessment tool that allows for personal data collection spanning chemical exposures, location and lung function measures as well as self-reported information.


Assuntos
Coleta de Dados/instrumentação , Saúde Ambiental/instrumentação , Adulto , Exposição Ambiental/análise , Feminino , Sistemas de Informação Geográfica , Humanos , Masculino , Pessoa de Meia-Idade , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenômenos Fisiológicos Respiratórios
8.
Environ Pollut ; 349: 123877, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574945

RESUMO

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Retardadores de Chama , Silicones , Humanos , Adulto , Retardadores de Chama/análise , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos , Masculino , Feminino , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Praguicidas/análise , Adulto Jovem , Punho , Ácidos Ftálicos/análise
9.
Sci Total Environ ; 927: 172187, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582107

RESUMO

Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Retardadores de Chama , Organofosfatos , Plastificantes , Silicones , Retardadores de Chama/análise , Plastificantes/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Organofosfatos/urina , Bélgica , Adulto , Poluentes Ambientais/urina , Masculino , Feminino
10.
Environ Int ; 184: 108457, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281448

RESUMO

Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Praguicidas , Humanos , Praguicidas/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Gases , Silicones , Exposição Ambiental/análise , Monitoramento Ambiental/métodos
11.
Chemosphere ; 339: 139778, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567263

RESUMO

Silicone wristbands were utilized as personal passive samplers in a sub-cohort of 92 women, who participated in New York University Children's Health and Environment Study, to assess exposure to semi-volatile organic compounds (SVOCs). Wristbands were analyzed for 77 SVOCs, including halogenated and non-halogenated organophosphate esters (OPEs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and brominated flame retardants (BFRs) (e.g. polybrominated diphenyl ethers (PBDEs)). This study aimed to look for patterns in chemical exposure utilizing participant demographics gathered from a questionnaire, and chemical exposure data across multiple timepoints during pregnancy. Analysis focused on 27 compounds detected in at least 80% of the wristbands examined. The chemicals detected most frequently included two pesticides, eight phthalates, one phthalate alternative, seven BFRs, and nine OPEs, including isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs). Co-exposure to different SVOCs was most prominent in compounds that were within the same chemical class or were used in similar consumer applications such as phthalates and OPEs, which are often used as plasticizers. Pre-pregnancy BMI was positively associated with multiple compounds, and there were both positive and negative associations between women's parity and SVOC exposure. Outdoor temperature was not correlated with the wristband concentrations over a five-day sampling period. Lastly, significant and moderately high Intraclass Correlation Coefficient (ICC) (0.66-0.84) values for phthalate measurementsacross pregnancy indicate chronic exposure and suggest that using wristbands during one sampling period may reliably predict exposure. However, multiple sampling periods may be necessary to accurately determine indoor exposure to other SVOCs including OPEs and BFRs.


Assuntos
Retardadores de Chama , Praguicidas , Compostos Orgânicos Voláteis , Criança , Humanos , Feminino , Gravidez , Silicones/química , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Organofosfatos/análise , Praguicidas/análise , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Ésteres
12.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873084

RESUMO

Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.

13.
J Expo Sci Environ Epidemiol ; 33(4): 548-557, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35449448

RESUMO

BACKGROUND: Differential risks for adverse pregnancy outcomes may be influenced by prenatal chemical exposures, but current exposure methods may not fully capture data to identify harms and differences. METHODS: We collected maternal and cord sera from pregnant people in Fresno and San Francisco, and screened for over 2420 chemicals using LC-QTOF/MS. We matched San Francisco participants to Fresno participants (N = 150) and compared detection frequencies. Twenty-six Fresno participants wore silicone wristbands evaluated for over 1500 chemicals using quantitative chemical analysis. We assessed whether living in tracts with higher levels of pollution according to CalEnviroScreen correlated with higher numbers of chemicals detected in sera. RESULTS: We detected 2167 suspect chemical features across maternal and cord sera. The number of suspect chemical features was not different by city, but a higher number of suspect chemicals in cosmetics or fragrances was detected in the Fresno versus San Francisco participants' sera. We also found high levels of chemicals used in fragrances measured in the silicone wristbands. Fresno participants living in tracts with higher pesticide scores had higher numbers of suspect pesticides in their sera. CONCLUSIONS: Multiple exposure-assessment approaches can identify exposure to many chemicals during pregnancy that have not been well-studied for health effects.


Assuntos
Monitoramento Ambiental , Praguicidas , Gravidez , Feminino , Humanos , Monitoramento Ambiental/métodos , Silicones , Exposição Ambiental/análise , Praguicidas/análise , California
14.
Artigo em Inglês | MEDLINE | ID: mdl-35682254

RESUMO

Hurricane Harvey was associated with flood-related damage to chemical plants and oil refineries, and the flooding of hazardous waste sites, including 13 Superfund sites. As clean-up efforts began, concerns were raised regarding the human health impact of possible increased chemical exposure resulting from the hurricane and subsequent flooding. Personal sampling devices in the form of silicone wristbands were deployed to a longitudinal panel of individuals (n = 99) within 45 days of the hurricane and again one year later in the Houston metropolitan area. Using gas chromatography−mass spectroscopy, each wristband was screened for 1500 chemicals and analyzed for 63 polycyclic aromatic hydrocarbons (PAHs). Chemical exposure levels found on the wristbands were generally higher post-Hurricane Harvey. In the 1500 screen, 188 chemicals were detected, 29 were detected in at least 30% of the study population, and of those, 79% (n = 23) were found in significantly higher concentrations (p < 0.05) post-Hurricane Harvey. Similarly, in PAH analysis, 51 chemicals were detected, 31 were detected in at least 30% of the study population, and 39% (n = 12) were found at statistically higher concentrations (p < 0.05) post-Hurricane Harvey. This study indicates that there were increased levels of chemical exposure after Hurricane Harvey in the Houston metropolitan area.


Assuntos
Tempestades Ciclônicas , Hidrocarbonetos Policíclicos Aromáticos , Inundações , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Silicones/análise , Silicones/química
15.
Environ Int ; 169: 107339, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116363

RESUMO

Personal chemical exposure assessment is necessary to determine the frequency and magnitude of individual chemical exposures, especially since chemicals present in everyday environments may lead to adverse health outcomes. In the last decade, silicone wristbands have emerged as a new chemical exposure assessment tool and have since been utilized for assessing personal exposure to a wide range of chemicals in a variety of populations. Silicone wristbands can be powerful tools for quantifying personal exposure to chemical mixtures in a single sample, associating exposure with health outcomes, and potentially overcoming some of the challenges associated with quantifying the chemical exposome. However, as their popularity grows, it is crucial that they are used in the appropriate context and within the limits of the technology. This review serves as a guide for researchers interested in utilizing silicone wristbands as a personal exposure assessment tool. Along with briefly discussing the passive sampling theory behind silicone wristbands, this review performs an in-depth comparison of wristbands to other common exposure assessment tools, including biomarkers of exposure measured in biospecimens, and evaluates their utility in exposure assessments and epidemiological studies. Finally, this review includes recommendations for utilizing silicone wristbands to evaluate personal chemical exposure and provides suggestions on what research is needed to recognize silicone wristbands as a premier chemical exposure assessment tool.


Assuntos
Monitoramento Ambiental , Silicones , Biomarcadores , Conhecimento
16.
Environ Pollut ; 267: 115490, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254690

RESUMO

In this exploratory study, we measured for the first-time human exposure to about 90 semi-volatile organic chemicals (SVOCs) in France and Italy using silicone wristbands. Participants in France (n = 40) and in Italy (n = 31) wore a silicone wristband for five days during 2018 and 2019. Samples were analyzed for 39 polybrominated diphenyl ethers (PBDEs), 10 novel brominated flame retardants (nBFRs), 25 organophosphate esters (OPEs), and 18 polycyclic aromatic hydrocarbons (PAHs). In both groups, the most commonly detected chemicals were BDE-209, BEHTBP, tris[(2R)-1-chloro-2-propyl] phosphate (TCIPP), and phenanthrene among PBDEs, nBFRs, OPEs, and PAHs, respectively. The concentrations of ∑39 PBDEs, ∑10 nBFRs, ∑25 OPEs, ∑18 PAHs, and of most individual chemicals were generally significantly higher in samples from France than in those from Italy, except for BDE-209 and TCIPP. On a broader scale, the chemical concentrations were generally significantly lower in this study than those measured in the United States in previous studies using the same type of wristbands. Efforts to standardize the protocols for the use of silicone wristbands are still needed but this study shows that wristbands are capable of capturing regional differences in human exposure to a large variety of SVOCs and, therefore, can be used as personal exposure monitor for studies with global coverage.


Assuntos
Retardadores de Chama , Compostos Orgânicos Voláteis , Monitoramento Ambiental , França , Éteres Difenil Halogenados , Humanos , Itália , Organofosfatos , Silicones
17.
Sci Total Environ ; 652: 1022-1029, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380470

RESUMO

Personal exposure to pesticides has not been well characterized, especially among adolescents. We used silicone wristbands to assess pesticide exposure in 14 to 16 year old Latina girls (N = 97) living in the agricultural Salinas Valley, California, USA and enrolled in the COSECHA (CHAMACOS of Salinas Examining Chemicals in Homes and Agriculture) Study, a youth participatory action study in an agricultural region of California. We determined pesticide concentrations (ng/g/day) in silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry to determine the presence or absence of over 1500 chemicals. Predictors of pesticide detections and concentrations were identified using logistic regression, Wilcoxon rank sum tests, and Tobit regression models. The most frequently detected pesticides in wristbands were fipronil sulfide (87%), cypermethrin (56%), dichlorodiphenyldichloroethylene (DDE) (56%), dacthal (53%), and trans-permethrin (52%). Living within 100 m of active agricultural fields, having carpeting in the home, and having an exterminator treat the home in the past six months were associated with higher odds of detecting certain pesticides. Permethrin concentrations were lower for participants who cleaned their homes daily (GM: 1.9 vs. 6.8 ng/g/day, p = 0.01). In multivariable regression models, participants with doormats in the entryway of their home had lower concentrations (p < 0.05) of cypermethrin (87%), permethrin (99%), fipronil sulfide (69%) and DDE (75%). The results suggest that both nearby agricultural pesticide use and individual behaviors are associated with pesticide exposures.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Exposição Ocupacional/análise , Praguicidas/análise , Adolescente , Agricultura , California/etnologia , Exposição Ambiental/análise , Fazendeiros , Feminino , Hispânico ou Latino , Humanos , Silicones
18.
J Chromatogr A ; 1588: 41-47, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639062

RESUMO

For the first time, we present an analytical method to simultaneously extract, fractionate, and quantify four groups of semi-volatile organic compounds (SVOCs) in silicone wristbands, including 35 polybrominated diphenyl ethers (PBDEs), 10 novel flame retardants (NFRs), 19 organophosphate esters (OPEs), and 13 polycyclic aromatic hydrocarbons (PAHs). Wristbands were extracted using ultrasonication, and cleaned and fractionated on two multi-layer columns: one consisting of neutral alumina, neutral silica and Florisil, and the other consisting of neutral alumina, neutral silica, and acidic silica. Method accuracy and precision were validated using spiked wristband samples (n = 8) and procedural blanks (n = 7). Average matrix spike percent recoveries for all target analytes were within 57-107% with relative standard errors < 20%, with a few exceptions. This method was applied to analyze thirteen wristbands worn by ten participants for seven days; three participants wore two wristbands to evaluate duplicate samples. Percent recoveries of surrogate standards for all four groups of analytes in these wristbands were all within the 80-120% range with a few exceptions: recoveries for 13C12BDE-209 and for 13C12-triphenyl phosphate ranged from 35 to 62% and 69-176%, respectively. The majority of target analytes were detected in at least half of worn wristbands. The levels of total PBDEs, NFRs, OPEs and PAHs in deployed wristbands ranged from 28.4 to 412 ng, 40.7 to 625 ng, 2440 to 9580 ng, and 76.2 to 1240 ng, respectively.


Assuntos
Monitoramento Ambiental/métodos , Ésteres/análise , Retardadores de Chama/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Silicones/química , Monitoramento Ambiental/instrumentação , Éteres Difenil Halogenados/análise , Humanos , Hidrocarbonetos Clorados/análise , Organofosfatos/análise , Compostos Orgânicos Voláteis/análise , Dispositivos Eletrônicos Vestíveis/normas
19.
Artigo em Inglês | MEDLINE | ID: mdl-28844239

RESUMO

Agriculture in the United States employs youth ages ten and older in work environments with high pesticide levels. Younger children in rural areas may also be affected by indirect pesticide exposures. The long-term effects of pesticides on health and development are difficult to assess and poorly understood. Yet, epidemiologic studies suggest associations with cancer as well as cognitive deficits. We report a practical and cost-effective approach to assess environmental pesticide exposures and their biological consequences in children. Our approach combines silicone wristband personal samplers and DNA damage quantification from hair follicles, and was tested as part of a community-based participatory research (CBPR) project involving ten Latino children from farmworker households in North Carolina. Our study documents high acceptance among Latino children and their caregivers of these noninvasive sampling methods. The personal samplers detected organophosphates, organochlorines, and pyrethroids in the majority of the participants (70%, 90%, 80%, respectively). Pesticides were detected in all participant samplers, with an average of 6.2±2.4 detections/participant sampler. DNA damage in epithelial cells from the sheath and bulb of plucked hairs follicles was quantified by immunostaining 53BP1-labled DNA repair foci. This method is sensitive, as shown by dose response analyses to γ radiations where the lowest dose tested (0.1Gy) led to significant increased 53BP1 foci density. Immunolabeling of DNA repair foci has significant advantages over the comet assay in that specific regions of the follicles can be analyzed. In this cohort of child participants, significant association was found between the number of pesticide detections and DNA damage in the papilla region of the hairs. We anticipate that this monitoring approach of bioavailable pesticides and genotoxicity will enhance our knowledge of the biological effects of pesticides to guide education programs and safety policies.


Assuntos
Dano ao DNA , Reparo do DNA , Exposição Ambiental , Folículo Piloso/efeitos dos fármacos , Praguicidas , Manejo de Espécimes/instrumentação , Disponibilidade Biológica , Criança , Pesquisa Participativa Baseada na Comunidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Folículo Piloso/metabolismo , Humanos , North Carolina , Praguicidas/análise , Praguicidas/farmacocinética , Praguicidas/toxicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA