Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur Phys J E Soft Matter ; 43(11): 70, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33190209

RESUMO

We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we go beyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalism by introducing the proper irreducible dynamics following Cichocki and Hess, and Kawasaki. Differently from these authors, we include transverse contributions as well. This recovers the expression for the stress autocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, in case that those are evaluated in the overdamped limit. Finally, we argue that the found memory function reduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations and derive the corresponding hydrodynamic equations.

2.
Eur Phys J E Soft Matter ; 43(7): 46, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643013

RESUMO

The interaction of two dipolar hard spheres near a surface and under the influence of gravity and external perpendicular magnetic fields is investigated theoretically. The full ground-state phase diagram as a function of gravity and magnetic field strengths is established. A dimer (i.e., two touching beads) can only exist when the gravity and magnetic field strengths are simultaneously not too large. Thereby, upon increasing the magnetic field strength, three dimeric states emerge: a lying state (dimer axis parallel to the substrate), an inclined state (intermediate state between the lying and standing ones) and a standing state (dimer axis normal to the substrate). It is found that the orientation angles of the dimer axis and the dipole moment in the newly discovered inclined phase are related by a strikingly simple Snell-Descartes-like law. We argue that our findings can be experimentally verified in colloidal and granular systems.

3.
Eur Phys J E Soft Matter ; 43(6): 38, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32556853

RESUMO

Although there are theoretical predictions (Eur. Phys. J. E 41, 110 (2018)) for the rich-phase behaviour of colloidal cubes mixed with non-adsorbing polymers, a thorough verification of this phase behaviour is still underway; experimental studies on mixtures of cubes and non-adsorbing polymers in bulk are scarce. In this paper, mixtures of hollow silica nanocubes and linear polystyrene in N,-N-dimethylformamide are used to measure the structure factor of the colloidal cubes as a function of non-adsorbing polymer concentration. Together with visual observations these structure factors enabled us to assess the depletion-mediated phase stability of cube-polymer mixtures. The theoretical and experimental phase boundaries for cube-depletant mixtures are in remarkable agreement, despite the simplifications underlying the theory employed.

4.
Eur Phys J E Soft Matter ; 43(6): 36, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524432

RESUMO

The evaporation and crystallization process for sessile saline droplets during depressurization is experimentally studied. The relationship between ambient pressure and the crystallization pattern is primarily discussed. When the ambient pressure is low, salt particles are easily formed at the droplet contact line. In contrast, when the ambient pressure is similar to atmospheric pressure, it is more likely for cubic crystals to be formed inside the droplet. By analysing the contact angle fluctuation during crystallization, the experimental results show that the growth of a cubic salt crystal under high ambient pressure or low salt concentration leads to a greater deformation of the liquid-gas interface and a larger contact angle fluctuation. Finally, the Peclet number Pe is introduced to reflect the ratio of the rate of ion advection to the rate of diffusion. The Pe number is larger at lower ambient pressure, which means that the external mass transfer and convection effect is more significant under low pressure, with salt particles easily formed at the droplet contact line. The effect of concentration diffusion inside the droplet increases at higher ambient pressure, thereby, making it easy for cubic crystals to be formed inside the droplet.

5.
Eur Phys J E Soft Matter ; 43(10): 64, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009958

RESUMO

Drying-induced cracking is widely encountered in nature and is of fundamental interest in industrial applications. During desiccation, the evolution of water content is nonlinear. Considering the inhomogeneous procedure of desiccation, it is worth considering whether water content will affect the crack pattern formation. To address this concern, in this paper, we report an experimental investigation on the effect of water content on the failure mode in drying colloidal films. A distinct failure transition from random cracking to curling is found when the initial water content increases gradually. When the water content is below a critical value for given film thickness, random desiccation cracking driven by shrinkage is observed. Beyond this critical water content, the film curls with the advent of several main cracks. It is also found that the critical water content corresponding to the transition point depends on the film thickness. In order to qualitatively interpret the experimental observation, a theoretical model is established by adopting the fracture mechanics based on the energy method. The model is found to agree well with the experimental results, elucidating the effects of initial water content on the crack patterns and the transition of failure modes.

6.
Eur Phys J E Soft Matter ; 43(9): 61, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33006675

RESUMO

The effect of the strength and orientation of magnetic field with respect to the temperature gradient on the effective thermal conductivity [Formula: see text], in a kerosene-based ferrofluid with magnetite particles is reported. A new theoretical model to explain the experimental dependence [Formula: see text], obtained for both the parallel and perpendicular orientation of the magnetic field, relative to the temperature gradient is proposed, based on the Sillars equation (which is applied for the first time to a ferrofluid in this purpose). For computing [Formula: see text], we have considered that the particle agglomerations, arranged in field-induced microstructures, have ellipsoid forms and the ratio a/b between the major axis and the minor axis of the ellipsoid increases with increasing the magnetic field strength. Using the proposed theoretical model, we established for the first time a semi-empirical relationship between the ratio, a/b and the magnetic field, H, both for parallel and perpendicular H relative to the temperature gradient, determining then the dependence on H of [Formula: see text]. The theoretical results are in agreement with the experimental measurements. The reported results are of great practical importance and show that ferrofluids may be useful for incorporation in magnetic tuneable heat transfer devices or for other potential thermal applications.

7.
Eur Phys J E Soft Matter ; 43(10): 68, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33099687

RESUMO

Optical tweezers have paved the way towards the manipulation of particles and living cells at the micrometer range. Its extension towards the nanometer world may create unprecedented potentialities in many areas of science. Following a letter (O. Emile, J. Emile, H. Tabuteau, EPL 129, 58001 (2020)) that reported the observation of the trapping of a single 200nm diameter fluorescent particle in a nanometric volume, we detail here our experimental findings. In particular, the trapping mechanism is shown to be based on the radiation pressure of light in one direction and on the stimulated emission of the particle in the evanescent wave of a nanometer Arago spot on a glass/liquid interface on the other directions. The trapping volume is a 200nm height cylinder whose radius varies with the spreading of the evanescent wave near the spot and can reach 50nm. The calculation of the force and the parameters limiting the lifetime are detailed. Applications to laser trapping of atoms and molecules are also discussed.


Assuntos
Vidro/química , Nanopartículas/química , Pinças Ópticas , Absorção de Radiação , Fluoresceína/química
8.
Eur Phys J E Soft Matter ; 42(5): 62, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31115728

RESUMO

We study the motion of an active Brownian particle (ABP) using the overdamped Langevin dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi-one-dimensional corrugated channel comprised of periodically arrayed obstacles. The periodic arrangement of the obstacles enhances the persistent motion of the ABP in comparison to its motion in the free space. Persistent motion increases with the activity of the ABP. We note that the periodic arrangement induces directionality in ABP motion at late time, and it increases with the size of the obstacles. We also note that the ABP exhibits a super-diffusive dynamics in the corrugated channel. The transport property is independent of the shape of the channel; rather it depends on the packing fraction of the obstacles in the system. However, the ABP shows the usual diffusive dynamics in the quasi-one-dimensional channel with flat boundary.

9.
Eur Phys J E Soft Matter ; 42(2): 17, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30788606

RESUMO

The suppression or enhancement of the "coffee ring" effect depends on whether nanoparticles easily adhere to the gas-liquid interface and particle shape. To obtain deposition patterns of suspensions of nanoparticles strongly deviating from spheres, which is less studied in the literature, prolate ellipsoidal and cylindrical rod-shaped particles with a minimum aspect ratio of 4 are selected. Dynamic viscosity, which is a function of particle shape and volume fraction, is introduced into the evolution equations for film thickness and particle concentration. The nanoparticle deposition features and the contact line dynamics are examined numerically, and the effect of particle shape on the drying process is analysed. The results show that the contact line is in the depinning state during the droplet shrinkage, while the concentration and effective layer thickness of nanoparticles in the ring-formation region decrease with time, and the deposition band widens. The deposition ring height increases, and the recession of the contact line slows down with increasing aspect ratio. This means that for nanoparticles deviating strongly from spheres and not easily adhering to the gas-liquid interface, the "coffee ring" effect is enhanced when the suspension dries. A larger aspect ratio leads to a more obvious "coffee ring" feature.

10.
Eur Phys J E Soft Matter ; 42(5): 60, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31089826

RESUMO

In order to model the thermal interaction between two hard sphere particles, we propose a small modification of the Lowe-Andersen thermostat, a well-known numerical thermostat that acts on selected pairs of particles. The simulation procedure presented here is local, easy to implement and computationally inexpensive while perturbing the natural dynamics of the system in a minimal fashion.

11.
Eur Phys J E Soft Matter ; 42(12): 153, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31802279

RESUMO

We synthesized and characterized the colloidal suspensions of [Formula: see text] nanoparticles with x = 0.00, 0.02, 0.04, 0.06 and 0.1. The effect of the Fe3+ ion replacement by Nd3+ on the crystal structure is in-depth studied. The samples were characterized by the following techniques: X-ray diffraction (XRD), UV-Vis spectrophotometry, transmission electronic microscopy (TEM), small-angle X-ray scattering (SAXS), magnetization as a function of applied magnetic field (M-H loops) and magnetization as a function of temperature in zero-field-cooled and field-cooled regimes (ZFC-FC). From XRD cation distribution, structural parameters were extracted. The increasing in the bandgap is interpreted as a result of the higher interatomic separation with the doping. TEM micrographs reveal a polydisperse size and shape distribution of particles. The results for the volume-weighted average diameter measured by SAXS are consistent with those determined by XRD. From the M-H loops we found that the superparamagnetic (SPM) regime contributes with 95-97% for all samples, while only 3-5% contribution comes from the paramagnetic (PM) regime. The saturation magnetization increases in a steady manner upon increasing the Nd3+ ion molar ratio from 0.00 up to 0.06, reaching the maximum value of 105.8±0.4 Am2/kg at x = 0.06. It is worth to mention that the result for the saturation magnetization value are higher than that of the bulk material.

12.
Eur Phys J E Soft Matter ; 42(11): 150, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31773335

RESUMO

Rod-shaped active micro/nano-particles, such as bacterial and bipolar metallic micro/nano-motors, demonstrate novel collective phenomena far from the equilibrium state compared to passive particles. We apply a simulation approach --dissipative particle dynamics (DPD)-- to explore the collectively ordered states of self-propelled rods (SPRs). The SPRs are confined in a finite circular zone and repel each other when two rods touch each other. It is found that for a long enough rods system, the global vortex patterns, dynamic pattern oscillation between hedgehog pattern and vortex pattern, and hedgehog patterns are observed successively with increasing active force Fa. For the vortex pattern, the total interaction energy between the rods U is linear with active force Fa, i.e., U ∼ Fa . While the relation U ∼ Fa2 is obtained for the hedgehog structure. It is observed that a new hedgehog pattern with one defect core is created by two ejections of polar cluster in opposite directions from the original hedgehog pattern, and then merges into one through the diffusion of the two aggregates, i.e., the creation and annihilation of topological charges.

13.
Eur Phys J E Soft Matter ; 42(3): 38, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30915605

RESUMO

By exploring the properties of the energy landscape of a bidisperse system of soft harmonic disks in two dimensions we determine the thermal jamming transition. To be specific, we study whether the ground state of the system where the particles do not overlap can be reached within a reasonable time. Starting with random initial configurations, the energy landscape is probed by energy minimization steps as in case of athermal jamming and in addition steps where an energy barrier can be crossed with a small but non-zero probability. For random initial conditions we find that as a function of packing fraction the thermal jamming transition, i.e. the transition from a state where all overlaps can be removed to an effectively non-ergodic state where one cannot get rid of the overlaps, occurs at a packing fraction of [Formula: see text], which is smaller than the transition packing fraction of athermal jamming at [Formula: see text]. Furthermore, we show that the thermal jamming transition is in the universality class of directed percolation and therefore is fundamentally different from the athermal jamming transition.

14.
Eur Phys J E Soft Matter ; 42(1): 3, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30643999

RESUMO

Divalent ions, in particular calcium ions, constitute important macroelements in living organisms. They are also found in cell membranes, i.e., ensuring their stabilization or participating in synaptic transmission of nerve impulses. The aim of this work is to describe the interactions of divalent ions, such as Ca2+, Ba2+, and Sr2+, in electrolytes with the functional groups on the surface of liposomes formed from phosphatidylcholine (PC). Microelectrophoresis is used to determine the surface charge density as a function of pH. The interactions between ions found in solution and the functional groups of PC are described with the use of a seven-equilibrium mathematical model. Using this model along with experimental data on the charge density of the membrane surface, the association constants characterizing this equilibrium are determined. These parameters are used to calculate the theoretical model curves. The validity of the proposed model is confirmed by comparing the theoretically calculated changes in charge density on the liposome surface with the experimental results.


Assuntos
Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Adsorção , Bário/química , Cálcio/química , Cátions Bivalentes , Eletrólitos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Tamanho da Partícula , Estrôncio/química , Propriedades de Superfície
15.
Eur Phys J E Soft Matter ; 42(4): 48, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31011841

RESUMO

With the arrival of the information age, the electromagnetic energy in space increases constantly, resulting in the influence of electromagnetic waves on the charged aerosol particles in the environment which should be taken into account. Here, a numerical coupling method based on temporal and spatial scales is proposed to solve the difficulty in obtaining the trajectory of particles under the action of high-frequency electromagnetic waves. In the temporal scale, two constant forces with linear relationship are used to equilibrate the electromagnetic field forces under different conditions, however the above-mentioned equivalent method has the space limitation; in addition, on the spatial scale, the model with larger geometry should be divided into multiple basic modules spatially, the domain division method is adopted and due to the above method it can be used well in the basic module. Verified the correctness through the comparison of the results, and compared with the traditional method, the above method greatly reduces the computational complexity. Some interesting results were obtained by calculating the modulated waves with the above method, which indicate that special forms of electromagnetic waves will significantly affect the motion of particles.

16.
Eur Phys J E Soft Matter ; 42(6): 82, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31250312

RESUMO

There are two small errors at the beginning of sect. 2 which have been corrected in the present erratum.

17.
Eur Phys J E Soft Matter ; 42(7): 88, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31300918

RESUMO

The design of artificial microswimmers has generated significant research interest in recent years, for promise in applications such as nanomotors and targeted drug-delivery. However, many current designs suffer from a common problem, namely the swimmers remain in the fluid indefinitely, posing risks of clogging and damage. Inspired by recently proposed experimental designs, we investigate mathematically the dynamics of degradable active particles. We develop and compare two distinct chemical models for the decay of a swimmer, taking into account the material composition and nature of the chemical or enzymatic reaction at its surface. These include a model for dissolution without a reaction, as well as models for a reacting swimmer studied in the limit of large and small Damköhler number. A new dimensionless parameter emerges that allows the classification of colloids into ballistic and diffusive type. Using this parameter, we perform an asymptotic analysis to derive expressions for colloid lifetimes and their total mean squared displacement from release and validate these by numerical Monte Carlo simulations of the associated Langevin dynamics. Supported by general scaling relationships, our theoretical results provide new insight into the experimental applicability of a wide range of designs for degradable active colloids.

18.
Eur Phys J E Soft Matter ; 42(9): 129, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31571019

RESUMO

We investigate the relationship between pre-buckling and post-buckling states as a function of shell properties, within the deflation process of shells of an isotropic material. With an original and low-cost set-up that allows to measure simultaneously volume and pressure, elastic shells whose relative thicknesses span on a broad range are deflated until they buckle. We characterize the post-buckling state in the pressure-volume diagram, but also the relaxation toward this state. The main result is that before as well as after the buckling, the shells behave in a way compatible with predictions generated through thin shell assumption, and that this consistency persists for shells where the thickness reaches up to 0.3 the shell's midsurface radius.

19.
Eur Phys J E Soft Matter ; 42(9): 123, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512004

RESUMO

For a few decades, the influence of a magnetic field on the aggregation process of superparamagnetic colloids has been well known on short time scale. However, the accurate study of the equilibrium state is still challenging on some aspects. On the numerical aspect, current simulations have only access to a restricted set of experimental conditions due to the computational cost of long-range interactions in many-body systems. In the present paper, we numerically explore a new range of parameters thanks to sped up numerical simulations validated by a recent experimental and numerical study. We first show that our simulations reproduce results from previous study in well-established conditions. Then we show that unexpectedly long chains are observed for higher volume fractions and intermediate fields. We also present theoretical developments taking into account the interaction between the chains which are able to reproduce the data that we obtained with our simulations. We finally confirm this model thanks to experimental data.

20.
Eur Phys J E Soft Matter ; 41(12): 142, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30552543

RESUMO

The deterministic rotation of a ferromagnetic nanoparticle in a fluid is considered. The heating arising from viscous friction of a nanoparticle driven by circularly and linearly polarized alternating magnetic fields is investigated. Since the power loss of such fields depends on the character of the induced motion of a nanoparticle, all types of particle trajectories are described in detail. The dependences of the power loss on the alternating field parameters are determined. The optimal conditions for obtaining the maximum heating efficiency are discussed. The effect of heating enhancement by a static field is analyzed. The results obtained can be actual for the description of heating in the magnetic fluid hyperthermia cancer treatment, when the size of the particles used is a few tens of nanometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA