Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(3): 283-300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145287

RESUMO

Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.


Assuntos
Hipertensão , Ratos , Feminino , Humanos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/metabolismo , Tronco Encefálico/metabolismo , Pressão Sanguínea/genética , Núcleo Solitário/metabolismo , Perfilação da Expressão Gênica
2.
J Pharmacol Sci ; 154(2): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246729

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Humanos , Ratos , Animais , Criança , Ratos Endogâmicos WKY , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Ratos Endogâmicos SHR , Aminas , Metilfenidato/farmacologia , Modelos Animais , Dopamina
3.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627621

RESUMO

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Assuntos
Hipertensão , Insulinas , Síndrome Metabólica , Animais , Humanos , Masculino , Ratos , Adiponectina , Aorta , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CCL2 , Inflamação , Insulinas/metabolismo , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Estresse Oxidativo , Ratos Endogâmicos SHR
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000253

RESUMO

It has been reported that, in the spontaneously hypertensive rat (SHR) model of hypertension, different components of the G-protein/adenylate cyclase (AC)/Calcium-activated potassium channel of high conductance (BK) channel signaling pathway are altered differently. In the upstream part of the pathway (G-protein/AC), a comparatively low efficacy has been established, whereas downstream BK currents seem to be increased. Thus, the overall performance of this signaling pathway in SHR is elusive. For a better understanding, we focused on one aspect, the direct targeting of the BK channel by the G-protein/AC pathway and tested the hypothesis that the comparatively low AC pathway efficacy in SHR results in a reduced agonist-induced stimulation of BK currents. This hypothesis was investigated using freshly isolated smooth muscle cells from WKY and SHR rat tail artery and the patch-clamp technique. It was observed that: (1) single BK channels have similar current-voltage relationships, voltage-dependence and calcium sensitivity; (2) BK currents in cells with a strong buffering of the BK channel activator calcium have similar current-voltage relationships; (3) the iloprost-induced concentration-dependent increase of the BK current is larger in WKY compared to SHR; (4) the effects of activators of the PKA pathway, the catalytic subunit of PKA and the potent and selective cAMP-analogue Sp-5,6-DCl-cBIMPS on BK currents are similar. Thus, our data suggest that the lower iloprost-induced stimulation of the BK current in freshly isolated rat tail artery smooth muscle cells from SHR compared with WKY is due to the lower efficacy of upstream elements of the G-Protein/AC/BK channel pathway.


Assuntos
Cálcio , Hipertensão , Iloprosta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Músculo Liso Vascular , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Vasodilatadores , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Ratos , Cálcio/metabolismo , Iloprosta/farmacologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Vasodilatadores/farmacologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Masculino , Artérias/efeitos dos fármacos , Artérias/metabolismo , Cauda/irrigação sanguínea , Transdução de Sinais/efeitos dos fármacos
5.
Plant Foods Hum Nutr ; 79(2): 337-343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358640

RESUMO

Although Phoenix dactylifera dates are traditionally consumed for their health benefits, no research has been done on the vascular response in hypertensive animals. This study evaluated the vascular relaxation of hydroalcoholic extracts from seeds of three varieties of P. dactylifera; Sukkari seed (SS), Ajwa seed (AS), and Mabroom seed (MS) on L-NAME-induced hypertension and spontaneously hypertensive rats (SHR). Results showed that all extracts (10 µg/mL) caused relaxations higher than 60% in the aortic rings precontracted with 10- 6 M phenylephrine in normotensive rats, the SS extract was the most potent. Endothelial nitric oxide (NO) pathway is involved as significantly reduced vascular relaxation in denuded-endothelium rat aorta and with an inhibitor (10- 4 M L-Nω-Nitro arginine methyl ester; L-NAME) of endothelial nitric oxide synthase (eNOS). Confocal microscopy confirmed that 10 µg/mL SS extract increases NO generation as detected by DAF-FM fluorescence in intact aortic rings. Consistent with these findings, vascular relaxation in intact aortic rings at 10 µg/mL SS extract was significantly decreased in L-NAME-induced hypertensive rats (endothelial dysfunction model), but not in SHR. In both hypertensive models, the denuded endothelium blunted the vascular relaxation. In conclusion, the hydroalcoholic extract of the seed of P. dactylifera (Sukkari, Ajwa and Mabroom varieties) presents a potent endothelium-dependent vascular relaxation, via NO, in normotensive rats as well as in two different models of hypertension. This effect could be mediated by the presence of phenolic compounds identified by UHPLC-ESI-MS/MS, such as protocatechuic acid, and caftaric acid.


Assuntos
Hipertensão , NG-Nitroarginina Metil Éster , Óxido Nítrico , Phoeniceae , Extratos Vegetais , Ratos Endogâmicos SHR , Sementes , Animais , Sementes/química , Phoeniceae/química , Extratos Vegetais/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Masculino , Óxido Nítrico/metabolismo , Ratos , NG-Nitroarginina Metil Éster/farmacologia , Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação/efeitos dos fármacos , Aorta/efeitos dos fármacos , Anti-Hipertensivos/farmacologia
6.
Physiol Genomics ; 55(12): 606-617, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746712

RESUMO

Augmented vagal signaling may be therapeutic in hypertension. Most studies to date have used stimulation of the cervical vagal branches. Here, we investigated the effects of chronic intermittent electric stimulation of the ventral subdiaphragmatic vagal nerve branch (sdVNS) on long-term blood pressure, immune markers, and gut microbiota in the spontaneously hypertensive rat (SHR), a rodent model of hypertension characterized by vagal dysfunction, gut dysbiosis, and low-grade inflammation. We evaluated the effects of sdVNS on transcriptional networks in the nucleus of the solitary tract (NTS), a major cardioregulatory brain region with direct gut vagal projections. Male juvenile SHRs were implanted with radiotelemetry transmitters and vagal nerve cuffs for chronic intermittent electric sdVNS, applied three times per day for 7 consecutive weeks followed by 1 wk of no stimulation. Blood pressure was measured once a week using telemetry in the sdVNS group as well as age-matched sham-stimulated SHR controls. At the endpoint, colonic and circulating inflammatory markers, corticosterone, and circulating catecholamines were investigated. Bacterial 16 s sequencing measured gut bacterial abundance and composition. RNA sequencing evaluated the effects of sdVNS on transcriptional networks in the NTS. SHRs that received sdVNS exhibited attenuated development of hypertension compared with sham animals. No changes in peripheral inflammatory markers, corticosterone, or catecholamines and no major differences in gut bacterial diversity and composition were observed following sdVNS, apart from decreased abundance of Defluviitaleaceale bacterium detected in sdVNS SHRs compared with sham animals. RNA sequencing revealed significant sdVNS-dependent modulation of select NTS transcriptional networks, including catecholaminergic and corticosteroid networks.NEW & NOTEWORTHY We show that stimulation of the ventral subdiaphragmatic vagal nerve branch may be a promising potential approach to treating hypertension. The data are especially encouraging given that rodents received only 30 min per day of intermittent stimulation therapy and in view of the potential of long-term blood pressure effects that are not stimulus-locked.


Assuntos
Hipertensão , Estimulação do Nervo Vago , Ratos , Animais , Masculino , Ratos Endogâmicos SHR , Núcleo Solitário , Redes Reguladoras de Genes , Corticosterona , Hipertensão/genética , Hipertensão/terapia , Catecolaminas
7.
Dev Psychobiol ; 65(5): e22399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37338253

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that often presents with abnormal time perception and increased impulsive choice behavior. The spontaneously hypertensive rat (SHR) is the most widely used preclinical model of the ADHD-Combined and ADHD-Hyperactive/Impulsive subtypes of the disorder. However, when testing the spontaneously hypertensive rat from Charles River (SHR/NCrl) on timing and impulsive choice tasks, the appropriate control strain is not clear, and it is possible that one of the possible control strains, the Wistar Kyoto from Charles River (WKY/NCrl), is an appropriate model for ADHD-Predominately Inattentive. Our goals were to test the SHR/NCrl, WKY/NCrl, and Wistar (WI; the progenitor strain for the SHR/NCrl and WKY/NCrl) strains on time perception and impulsive choice tasks to assess the validity of SHR/NCrl and WKY/NCrl as models of ADHD, and the validity of the WI strain as a control. We also sought to assess impulsive choice behavior in humans diagnosed with the three subtypes of ADHD and compare them with our findings from the preclinical models. We found SHR/NCrl rats timed faster and were more impulsive than WKY/NCrl and WI rats, and human participants diagnosed with ADHD were more impulsive compared to controls, but there were no differences between the three ADHD subtypes.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Desvalorização pelo Atraso , Ratos , Humanos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Comportamento Impulsivo , Modelos Animais de Doenças
8.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985807

RESUMO

Daily consumption of eggplant powder containing 2.3 mg acetylcholine (ACh) is known to alleviate hypertension and improve mental status. However, eggplant powder used in clinical trials also contains the antihypertensive compound γ-aminobutyric acid (GABA). Although our previous study indicated that the main antihypertensive compound in eggplant is ACh, given that GABA amounts in eggplant do not reach the effective dosage, the effects of GABA on the antihypertensive effect of eggplant remain unclear. It is necessary to establish whether there is a synergistic effect between GABA and ACh and whether GABA in eggplant exerts antihypertensive effects. Consequently, here we sought to evaluate the effects of GABA on the antihypertensive effects of eggplant. We used a probability sum (q) test to investigate the combined effects of ACh and GABA and prepared eggplant powder with very low ACh content for oral administration in animals. ACh and GABA exhibited additive effects but the GABA content in eggplants was not sufficient to promote a hypotensive effect. In conclusion, ACh is the main component associated with the antihypertensive effects of eggplant but GABA within eggplants has a minimal effect in this regard. Thus, compared with GABA, ACh could be a more effective functional food constituent for lowering blood pressure.


Assuntos
Hipotensão , Solanum melongena , Ratos , Animais , Anti-Hipertensivos/farmacologia , Ratos Endogâmicos SHR , Acetilcolina/farmacologia , Pós/farmacologia , Pressão Sanguínea , Ácido gama-Aminobutírico/farmacologia
9.
Pflugers Arch ; 474(1): 141-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757454

RESUMO

Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.


Assuntos
Proteínas de Neoplasias/metabolismo , Acidente Vascular Cerebral/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Humanos
10.
J Pharmacol Sci ; 148(2): 229-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063138

RESUMO

Post-stroke antiplatelet therapy has been proved to reduce the risk of recurrent stroke; however, it may also increase the incidence of intracranial hemorrhage that could offset any benefits. Therefore, the balance between the benefits and risks of antiplatelet drugs is a critical issue to consider. In the present study, we have compared the effects of post-stroke administration of antiplatelet agents on functional outcomes in the stroke-prone spontaneously hypertensive rat (SHRSP), an established animal model that mimics human lacunar stroke and cerebral small vessel disease. We confirmed that a potent phosphodiesterase 3 (PDE3) inhibitor, K-134, significantly improved post-stroke survival rate and survival time, attenuated stroke-induced neurological deficits, and decreased the incidence of cerebral lesion caused by intracerebral hemorrhage and softening. Similarly, cilostazol showed beneficial effects, though to a lower extent with respect to the survival outcome and neurological symptoms. On the other hand, a P2Y12 inhibitor, clopidogrel significantly improved survival outcomes at the higher dose but caused massive bleeding in the brain at both low and high doses. In contrast, no hemorrhagic lesion was observed in K-134-treated SHRSPs despite its antiplatelet activity. Our findings indicate that K-134 may have a superior post-stroke therapeutic outcome in comparison to other antiplatelet drugs.


Assuntos
Inibidores da Fosfodiesterase 3/uso terapêutico , Quinolinas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Ureia/análogos & derivados , Animais , Hemorragia Cerebral/etiologia , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Ratos Endogâmicos SHR , Medição de Risco , Acidente Vascular Cerebral/mortalidade , Taxa de Sobrevida , Resultado do Tratamento , Ureia/uso terapêutico
11.
Clin Exp Pharmacol Physiol ; 49(1): 35-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459495

RESUMO

Hypertension induced left ventricular hypertrophy (LVH) augments the risk of cardiovascular anomalies. Mitochondrial alterations result in oxidative stress, accompanied by decrease in fatty acid oxidation, leading to the activation of the hypertrophic program. Targeted antioxidants are expected to reduce mitochondrial reactive oxygen species more effectively than general antioxidants. This study was designed to assess whether the mito-targeted antioxidant, Mito-Tempol (Mito-TEMP) is more effective than the general oxidant, Tempol (TEMP) in reduction of hypertension and hypertrophy and prevention of shift in cardiac energy metabolism. Spontaneously hypertensive rats were administered either TEMP (20 mg/kg/day) or Mito-TEMP (2 mg/kg/day) intraperitoneally for 30 days. Post treatment, animals were subjected to 2D-echocardiography. Myocardial lysates were subjected to RPLC - LTQ-Orbitrap-MS analysis. Mid-ventricular sections were probed for markers of energy metabolism and fibrosis. The beneficial effect on cardiovascular structure and function was significantly higher for Mito-TEMP. Increase in mitochondrial antioxidants and stimulation of fatty acid metabolism; with significant improvement in cardiovascular function was apparent in spontaneously hypertensive rats (SHR) treated with Mito-TEMP. The study indicates that Mito-TEMP is superior to its non- targeted isoform in preventing hypertension induced LVH, and the beneficial effects on heart are possibly mediated by reversal of metabolic remodelling.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Ecocardiografia , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Marcadores de Spin
12.
Pharmacology ; 107(3-4): 188-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35038707

RESUMO

INTRODUCTION: Angelica acutiloba is one of the crude drugs used in Chinese herbal medicine, and its intake is expected to improve metabolic syndrome-associated disorders. Here, we examined the effects of A. acutiloba extract (AAE) on hypertension and insulin resistance induced by the treatment of high-fat diet (HFD) to spontaneously hypertensive rats (SHRs). Then, we investigated the mechanisms associated with the effects of AAE. METHODS: AAE was administered to HFD-fed SHRs. Systolic blood pressure (SBP), sympathetic nerve activity, hypothalamic angiotensin-converting enzyme (ACE) activity, blood glucose level, plasma insulin concentration, visceral fat mass, and gene expression of tumor necrosis factor-alpha (TNF-α) in the visceral fat were evaluated. RESULTS: AAE reduced the increases in SBP and hypothalamic ACE activity observed in the HFD-fed SHRs, whereas the suppressive effect on sympathetic nerve activity was slight. Environmental stress-induced pressure and sympathetic overactivity were suppressed by the treatment of AAE. It also decreased the increase in the blood glucose level, plasma insulin concentration, homeostasis model assessment for the insulin resistance, and TNF-α gene expression in the visceral fat, but not the increase in the visceral fat mass. CONCLUSION: AAE has an antihypertensive effect, suppresses stress-induced hypertension, and improves insulin resistance in HFD-fed SHRs. The suppression of brain ACE activity, sympathetic nerve activity, and inflammation are partly involved in the effects of AAE.


Assuntos
Angelica , Resistência à Insulina , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Insulina , Ratos , Ratos Endogâmicos SHR
13.
Mar Drugs ; 20(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736148

RESUMO

Aquacultured fish are the richest natural source of protein. However, their overproduced biomass is often discarded due to production imbalance, causing considerable losses to the fishery industry. Therefore, it is necessary to utilize surplus fish and add value to overproduced fish. We performed complex enzyme-assisted hydrolysis to determine the correlation between its physical characteristics and anti-hypertensive activity in vitro and in vivo using an SHR model. Protamex-Pepsin assisted hydrolysate from Paralichthys olivaceus (POppH) produced by complex enzyme-assisted hydrolysis contained low-molecular-weight peptides and amino acids with anti-hypertensive activity. POppH regulated blood pressure and serum angiotensin II and angiotensin-I-converting enzyme levels, and histological and ultrasound image analysis revealed substantially reduced thickness and diameter of the carotid aorta in the POppH-administered SHR group. Therefore, we propose to reduce food loss due to overproduction by utilizing the anti-hypertensive activity and physical properties of POppH; the results demonstrate its application as a therapeutic agent.


Assuntos
Linguado , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Anti-Hipertensivos/química , Pressão Sanguínea , Peixes , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Ratos , Ratos Endogâmicos SHR
14.
J Mol Cell Cardiol ; 158: 140-152, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081950

RESUMO

3-Hydroxy-3-methyl glutaryl-coenzyme A reductase (Hmgcr) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway. The regulation of Hmgcr in rat models of genetic hypertension (viz. Spontaneously Hypertensive Rat [SHR] and its normotensive control Wistar/Kyoto [WKY] strain) is unclear. Interestingly, Hmgcr transcript and protein levels are diminished in liver tissues of SHR as compared to WKY. This observation is consistent with the diminished plasma cholesterol level in SHR animals. However, the molecular basis of these apparently counter-intuitive findings remains completely unknown. Sequencing of the Hmgcr promoter in SHR and WKY strains reveals three variations: A-405G, C-62T and a 11 bp insertion (-398_-388insTGCGGTCCTCC) in SHR. Among these variations, A-405G occurs at an evolutionarily-conserved site among many mammals. Moreover, SHR-Hmgcr promoter displays lower activity than WKY-Hmgcr promoter in various cell lines. Transient transfections of Hmgcr-promoter mutants and in silico analysis suggest altered binding of Runx3 and Srebf1 across A-405G site. On the other hand, C-62T and -398_-388insTGCGGTCCTCC variations do not appear to contribute to the reduced Hmgcr promoter activity in SHR as compared to WKY. Indeed, chromatin immunoprecipitation assays confirm differential binding of Runx3 and Srebf1 to Hmgcr promoter leading to reduced expression of Hmgcr in SHR as compared to WKY under basal as well as cholesterol-modulated conditions. Taken together, this study provides, for the first time, molecular basis for diminished Hmgcr expression in SHR animals, which may account for the reduced circulating cholesterol level in this widely-studied model for cardiovascular diseases.


Assuntos
Alelos , Regulação da Expressão Gênica , Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Hipertensão/enzimologia , Hipertensão/genética , Regiões Promotoras Genéticas/genética , Animais , Células CHO , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Cricetulus , Feminino , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transfecção
15.
J Physiol ; 599(12): 3237-3252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33873234

RESUMO

KEY POINTS: Carotid body (CB) chemoreceptors are hyperactive in hypertension, and their acute activation produces bronchoconstriction. We show that the respiratory-modulated bronchiolar tone, pulmonary parasympathetic efferent activity, and the firing frequency and synaptic excitation of bronchoconstrictor motoneurones in the nucleus ambiguus were all enhanced in spontaneous hypertensive (SH) rats. In SH rats, CB denervation reduced the respiratory-related parasympathetic-mediated bronchoconstrictor tone to levels seen in normotensive rats. Chemoreflex evoked bronchoconstrictor tone was heightened in SH versus normotensive rats. The intrinsic electrophysiological properties and morphology of bronchoconstrictor motoneurones were similar across rat strains. The heightened respiratory modulation of parasympathetic-mediated bronchoconstrictor tone to the airways in SH rats is caused by afferent drive from the CBs. ABSTRACT: Much research has described heightened sympathetic activity in hypertension and diminished parasympathetic tone, especially to the heart. The carotid body (CB) chemoreceptors exhibit hyperreflexia and are hyperactive, providing excitatory drive to sympathetic networks in hypertension. Given that acute CB activation produces reflex evoked bronchoconstriction via activation of parasympathetic vagal efferents, we hypothesised that the parasympathetic bronchoconstrictor activity is enhanced in spontaneously hypertensive (SH) rats and that this is dependent on CB inputs. In situ preparations of Wistar and SH rats were used in which bronchiolar tone, the pulmonary branch of the vagus (pVN) and phrenic nerves were recorded simultaneously; whole cell patch clamp recordings of bronchoconstrictor vagal motoneurones were also made from the nucleus ambiguus. Bronchiolar tone, pVN and bronchoconstrictor motoneurones were respiratory modulated and this modulation was enhanced in SH rats. These differences were all eliminated after CB denervation. Stimulation of the CBs increased the phrenic frequency that caused a summation of the respiratory-related increases in pVN, resulting in the development of bronchoconstrictor tone. This tone was exaggerated in SH rats. The enhanced respiratory-parasympathetic coupling to airways in SH rats was not due to differences in the intrinsic electrophysiological properties of bronchoconstrictor motoneurones but reflected heightened pre-inspiratory- and inspiratory-related synaptic drive. In summary, in SH rats the phasic respiratory modulation of parasympathetic tone to the airways is elevated and the greater development of this bronchoconstrictor tone is caused by the heightened afferent drive originating from the CBs. Thus, targeting the CBs may prove effective for increasing lower airway patency.


Assuntos
Hipertensão , Animais , Pressão Sanguínea , Bulbo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
16.
Microvasc Res ; 133: 104061, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827495

RESUMO

BACKGROUND: The pathological character of cerebral small vessel disease (CSVD) is the dysfunction of cerebral small arteries caused by risk factors. A switch from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (SMCs) can decrease the contractility of arteries. The alteration of the vascular wall extracellular matrix (ECM) is found to regulate the process. We speculated that SMCs phenotype changes may also occur in CSVD induced by hypertension and the alteration of ECM especially fibronectin and laminin may regulate the process. METHOD: Male spontaneously hypertensive rats (SHR) were used as a CSVD animal model. SMCs phenotypic markers and the ECM expression of the cerebral small arteries of SHR at different ages were evaluated by immunofluorescence. The phenotype changes of primary brain microvascular SMCs cultured on laminin-coating dish or fibronectin-coating dish were evaluated by western blot. RESULT: A switch from the contractile phenotype to synthetic phenotype in SHR at 10 and 22 weeks of age was observed. Meanwhile, increased expression of fibronectin and a temporary decline of laminin was found in small arteries of SHR at 22 weeks. In vitro experiments also convinced that SMCs cultured on a fibronectin-coating dish failed to maintain contractile phenotype. While at 50 weeks, significant drops of both synthetic and contractile phenotypic markers were witnessed in SHR, with high expressions of four kinds of ECM. CONCLUSION: SMCs in cerebral small arteries exhibited a switch from the contractile phenotype to synthetic phenotype during the chronic process of hypertension and aging. Moreover, the change of fibronectin and laminin may regulate the process.


Assuntos
Doenças de Pequenos Vasos Cerebrais/etiologia , Matriz Extracelular/metabolismo , Hipertensão/complicações , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores Etários , Animais , Biomarcadores/metabolismo , Células Cultivadas , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibronectinas/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Laminina/metabolismo , Masculino , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Fenótipo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Vascular , Vasoconstrição
17.
Pharmacol Res ; 173: 105875, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500062

RESUMO

Cerebrovascular disease, a frequent complication of hypertension, is a major public health issue for which novel therapeutic and preventive approaches are needed. Autophagy activation is emerging as a potential therapeutic and preventive strategy toward stroke. Among usual activators of autophagy, the natural disaccharide trehalose (TRE) has been reported to be beneficial in preclinical models of neurodegenerative diseases, atherosclerosis and myocardial infarction. In this study, we tested for the first time the effects of TRE in the stroke-prone spontaneously hypertensive rat (SHRSP) fed with a high-salt stroke permissive diet (JD). We found that TRE reduced stroke occurrence and renal damage in high salt-fed SHRSP. TRE was also able to decrease systolic blood pressure. Through ex-vivo studies, we assessed the beneficial effect of TRE on the vascular function of high salt-fed SHRSP. At the molecular level, TRE restored brain autophagy and reduced mitochondrial mass, along with the improvement of mitochondrial function. The beneficial effects of TRE were associated with increased nuclear translocation of TFEB, a transcriptional activator of autophagy. Our results suggest that TRE may be considered as a natural compound efficacious for the prevention of hypertension-related target organ damage, with particular regard to stroke and renal damage.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Trealose/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , NADPH Oxidases/genética , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos SHR , Sódio na Dieta/administração & dosagem , Trealose/farmacologia , Fator de Necrose Tumoral alfa/genética
18.
Int J Med Sci ; 18(4): 975-983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456355

RESUMO

Pathological cutaneous scars, with aberrant extracellular matrix accumulation, have multiple origins. Antihypertensive medications, such as calcium channel blockers, have been used to treat pathological scars. However, a relationship between angiotensin-converting enzyme (ACE) inhibitors, pathological scars, and blood pressure (BP) has never been reported. Here, we aimed to compare the differences in scar development and the effects of the administration of systemic ACE inhibitor on scar tissue in a normotensive rat, the Wistar Kyoto rat (WKY), a hypertensive rat, and the spontaneously hypertensive rat (SHR). Using an 8-mm punch, we created two full-thickness skin defects in a total of 32 rats (16 WKY and 16 SHR) to obtain a total of 64 wounds. We established control WKY (n = 16), captopril-treated WKY (n = 16), control SHR (n = 16), and captopril-treated SHR (n = 16) groups and started captopril (100 mg/g per day) treatment on day 21 in the appropriate groups. The BP of all groups was measured at 0, 3, and 5 weeks. The scar area was measured by histopathological examination, and scarring was expressed in terms of scar area and fibroblast and capillary counts. The expression of heat shock protein (HSP) 47, type I and III collagens, alpha-smooth muscle actin (α-SMA), Ki67, and vascular endothelial growth factor (VEGF) was investigated using immunohistochemistry. The scar area and fibroblast count were significantly higher in control SHR than in control WKY. The scar area, fibroblast count, and capillary count were significantly smaller in captopril-treated SHR than in control SHR. Immunostaining for α-SMA, Ki67, and VEGF also showed a noticeable decrease in scarring in the treated SHR compared with that in control SHR. Thus, BP affects scar development in a rat model, and an ACE inhibitor is more effective at reducing scars in hypertensive rats than in normotensive rats.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Captopril/administração & dosagem , Cicatriz/tratamento farmacológico , Hipertensão/tratamento farmacológico , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Cicatriz/etiologia , Cicatriz/patologia , Modelos Animais de Doenças , Humanos , Hipertensão/complicações , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Pele/efeitos dos fármacos , Pele/patologia
19.
Clin Exp Pharmacol Physiol ; 48(12): 1674-1684, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34375480

RESUMO

This study investigated the impact of intrarenal angiotensin 1-7 (Ang [1-7]) infusion on renal excretory function in a rat model of hypertension. Eleven-week-old spontaneously hypertensive rats (SHRs, n = 7) and Han Wistar controls (NCR, n = 7) were anaesthetised with sodium pentobarbital (60 mg/kg i.p.) and prepared for the measurement of mean arterial pressure (MAP) and left renal function during renal interstitial infusion of Ang (1-7) (50 ng/min). The kidneys were harvested, the renal cortex and medulla separated, prepared for measurement of Ang II and Ang (1-7) and Western blot determination of AT1 and Mas receptor protein expression. MAP, glomerular filtration rate (GFR), urine flow (UF) and absolute sodium excretion (UNaV) were 109 ± 16 mmHg, 4.4 ± 1.0 mL/min/kg, 102 ± 16 µL/min/kg and 16 ± 3 µmol/min/kg, respectively in the NCR and 172 ± 24 mmHg, 3.4 ± 0.7 mL/min/kg, 58 ± 30 µL/min/kg and 8.6 ± 4.8 µmol/min/kg respectively in the SHR. Ang (1-7) increased UF (31%), UNa V (50%) and fractional sodium excretion (FENa+ ) (22%) in the NCR group (all p < 0.05) but had no effect on GFR in either group. The magnitudes of the Ang (1-7)-induced increases in UF and UNa V were significantly blunted in the SHR group (model × drug p < 0.05). The renal cortical AT1: Mas receptor expression ratio was significantly higher in the SHR group (p < 0.05) but renal Ang II and Ang (1-7) levels were not statistically different between groups. The Ang (1-7)-induced increases in sodium and water excretion were impaired in the SHR group in the context of an unstimulated RAS. The decrease in responsiveness of the SHR kidney to Ang (1-7) appears to be associated with higher levels of AT1 receptor expression in the renal cortex.


Assuntos
Angiotensina I , Fragmentos de Peptídeos
20.
Clin Exp Pharmacol Physiol ; 48(11): 1547-1557, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333780

RESUMO

We have previously shown that cannabinoid CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of ß1 -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 µM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 µM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 µM) and AM630 (0.1 µM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on ß-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.


Assuntos
Isoproterenol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA