Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477714

RESUMO

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente Tumoral
2.
Expert Rev Mol Med ; 26: e27, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39397711

RESUMO

Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Estruturas Metalorgânicas/química , Humanos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanoestruturas/química
3.
Small ; 20(26): e2308861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372029

RESUMO

The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.


Assuntos
Glucose Oxidase , Lipossomos , Sorafenibe , Lipossomos/química , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Animais , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Metabolismo Energético , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Indóis
4.
Chembiochem ; 25(12): e202400239, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623847

RESUMO

Glucose transporter protein-1 (Glut1), is highly expressed in many cancer types and plays a crucial role in cancer progression through enhanced glucose transport. Its overexpression is associated with aggressive tumor behavior and poor prognosis. Herein, the nucleic acids modified gold nanoparticles (AuNPs) was synthesized to deliver small interfering RNA (siRNA) against Glut1 by microRNA 21 (miR-21) triggers toehold-mediated strand displacement reaction for lung cancer starvation therapy. Overexpression of miR-21 triggers toehold-mediated strand displacement, releasing the siRNA to knockdown of Glut1 in cancer cell instead of normal cell. Furthermore, the glucose oxidase-like activity of the AuNPs accelerates intracellular glucose consumption, promoting cancer cell starvation. The engineered AuNPs@anti-miR-21/siGlut1 complex inhibits cancer cell proliferation, xenograft tumor growth and promotes apoptosis through glucose starvation and ROS cascade signaling, underscoring its potential as an effective therapeutic strategy for lung cancer.


Assuntos
Proliferação de Células , Transportador de Glucose Tipo 1 , Glucose , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , RNA Interferente Pequeno , Ouro/química , Humanos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Glucose/metabolismo , Nanopartículas Metálicas/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/química , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C
5.
Chemistry ; 30(49): e202401640, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38935332

RESUMO

Nanozymes have obvious advantages in improving the efficiency of cancer treatment. However, due to the lack of tissue specificity, low catalytic efficiency, and so on, their clinical applications are limited. Herein, the nanoplatform CeO2@ICG@GOx@HA (CIGH) with self-accelerated cascade reactions is constructed. The as-prepared nanozyme shows the superior oxidase (OXD)-like, superoxide dismutase (SOD)-like, catalase (CAT)-like and peroxidase (POD)-like activities. At the same time, under 808 nm near-infrared (NIR) irradiation, the photodynamic and photothermal capabilities are also significantly enhanced due to the presence of indocyanine green (ICG). We demonstrate that the nanozyme CIGH can efficiently accumulate in the tumor and exhibit amplified cascade antitumor effects with negligible systemic toxicity through the combination of photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT) and starvation therapy. The nanozyme prepared in this study provides a promising candidate for catalytic nanomedicines for efficient tumor therapy.


Assuntos
Cério , Verde de Indocianina , Fotoquimioterapia , Cério/química , Humanos , Verde de Indocianina/química , Animais , Camundongos , Catalase/química , Catalase/metabolismo , Catálise , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Raios Infravermelhos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Fototérmica , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo
6.
Chemistry ; 30(31): e202400195, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563653

RESUMO

Framework and polymeric nanoreactors (NRs) have distinct advantages in improving chemical reaction efficiency in the tumor microenvironment (TME). Nanoreactor-loaded oxidoreductase enzyme is activated by tumor acidity to produce H2O2 by increasing tumor oxidative stress. High levels of H2O2 induce self-destruction of the vesicles by releasing quinone methide to deplete glutathione and suppress the antioxidant potential of cancer cells. Therefore, the synergistic effect of the enzyme-loaded nanoreactors results in efficient tumor ablation via suppressing cancer-cell metabolism. The main driving force would be to take advantage of the distinct metabolic properties of cancer cells along with the high peroxidase-like activity of metalloenzyme/metalloprotein. A cascade strategy of dual enzymes such as glucose oxidase (GOx) and nitroreductase (NTR) wherein the former acts as an O2-consuming agent such as overexpression of NTR and further amplified NTR-catalyzed release for antitumor therapy. The design of cascade bioreductive hypoxia-responsive drug delivery via GOx regulates NTR upregulation and NTR-responsive nanoparticles. Herein, we discuss tumor hypoxia, reactive oxygen species (ROS) formation, and the effectiveness of these therapies. Nanoclusters in cascaded enzymes along with chemo-radiotherapy with synergistic therapy are illustrated. Finally, we outline the role of the nanoreactor strategy of cascading enzymes along with self-synergistic tumor therapy.


Assuntos
Glucose Oxidase , Neoplasias , Microambiente Tumoral , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Nitrorredutases/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos
7.
J Nanobiotechnology ; 22(1): 127, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520008

RESUMO

The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.


Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/química , Inibidores da Angiogênese/farmacologia , Angiogênese , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
8.
Nanomedicine ; 61: 102764, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885751

RESUMO

Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.


Assuntos
Carbono , Glucose Oxidase , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Glucose Oxidase/metabolismo , Animais , Carbono/metabolismo , Carbono/química , Glucose/metabolismo , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Metformina/farmacologia , Metformina/uso terapêutico , Ácido Láctico/metabolismo , Peróxido de Hidrogênio/metabolismo
9.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963544

RESUMO

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Assuntos
Cobre , Doxorrubicina , Glucose Oxidase , Ácido Hialurônico , Estruturas Metalorgânicas , Microambiente Tumoral , Zeolitas , Cobre/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Microambiente Tumoral/efeitos dos fármacos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Zeolitas/química , Animais , Estruturas Metalorgânicas/química , Ácido Hialurônico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Imidazóis
10.
Molecules ; 29(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203042

RESUMO

Nanofiber (NF) membrane systems that can provide cascade catalytic reaction and ferroptosis induction were developed for oral cancer therapy. Glucose oxidase (GOx) and aminoferrocene (AF) were introduced into the NF system for glucose deprivation/H2O2 generation and OH radical generation, respectively. GOx offers starvation therapy and AF (including iron) provides chemodynamic therapy/ferroptosis for combating oral cancer. GOx (water-soluble) and AF (poorly water-soluble) molecules were successfully entrapped in the NF membrane via an electrospinning process. GOx and AF were incorporated into the polyvinyl alcohol (PVA)-based NF, resulting in PVA/GOx/AF NF with fast disintegration and immediate drug-release properties. In oral squamous cell carcinoma (YD-9 cells), the PVA/GOx/AF NF group exhibited higher cytotoxicity, antiproliferation potential, cellular ROS level, apoptosis induction, lipid ROS level, and malondialdehyde level compared to the other NF groups. The electrospun PVA/GOx/AF NF can be directly applied to oral cancer without causing pain, offering starvation/chemodynamic therapy and ferroptosis induction.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Radical Hidroxila , Neoplasias Bucais , Nanofibras , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Nanofibras/química , Ferroptose/efeitos dos fármacos , Radical Hidroxila/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Álcool de Polivinil/química , Proliferação de Células/efeitos dos fármacos
11.
Small ; 19(42): e2303253, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37330663

RESUMO

Tumor-dependent glucose and glutamine metabolisms are essential for maintaining survival, while the accordingly metabolic suppressive therapy is limited by the compensatory metabolism and inefficient delivery efficiency. Herein, a functional metal-organic framework (MOF)-based nanosystem composed of the weakly acidic tumor microenvironment-activated detachable shell and reactive oxygen species (ROS)-responsive disassembled MOF nanoreactor core is designed to co-load glycolysis and glutamine metabolism inhibitors glucose oxidase (GOD) and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) for tumor dual-starvation therapy. The nanosystem excitingly improves tumor penetration and cellular uptake efficiency via integrating the pH-responsive size reduction and charge reversal and ROS-sensitive MOF disintegration and drug release strategy. Furthermore, the degradation of MOF and cargoes release can be self-amplified via additional self-generation H2 O2 mediated by GOD. Last, the released GOD and BPTES collaboratively cut off the energy supply of tumors and induce significant mitochondrial damage and cell cycle arrest via simultaneous restriction of glycolysis and compensatory glutamine metabolism pathways, consequently realizing the remarkable triple negative breast cancer killing effect in vivo with good biosafety via the dual starvation therapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Glutamina/metabolismo , Glutamina/uso terapêutico , Espécies Reativas de Oxigênio , Glucose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nanotecnologia , Glucose Oxidase/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Small ; 19(46): e2304058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475522

RESUMO

"Warburg Effect" shows that most tumor cells rely on aerobic glycolysis for energy supply, leading to malignant energy deprivation and an "internal alkaline external acid" tumor microenvironment. Destructing the "Warburg Effect" is an effective approach to inhibit tumor progression. Herein, an acidity-responsive nanoreactor (Au@CaP-Flu@HA) is fabricated for toxic acidosis and starvation synergistic therapy. In the nanoreactor, the fluvastatin (Flu) could reduce lactate efflux by inhibiting the lactate-proton transporter (monocarboxylate transporters, MCT4), resulting in intracellular lactate accumulation. Meanwhile, the glucose oxidase-mimic Au-nanocomposite consumes glucose to induce cell starvation accompanied by gluconic acid production, coupling with lactate to exacerbate toxic acidosis. Also, the up-regulated autophagic energy supply of tumor cells under energy deprivation and hypoxia aggravation is blocked by autophagy inhibitor CaP. Cellular dysfunction under pHi acidification and impaired Adenosine Triphosphate (ATP) synthesis under starvation synergistically promote tumor cell apoptosis. Both in vitro and in vivo studies demonstrate that this combinational approach of toxic-acidosis/starvation therapy could effectively destruct the "Warburg Effect" to inhibit tumor growth and anti-metastatic effects.


Assuntos
Acidose , Neoplasias , Humanos , Glicólise , Neoplasias/patologia , Ácido Láctico , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
13.
J Nanobiotechnology ; 21(1): 201, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365598

RESUMO

Malignant bone tumors result in high rates of disability and death and are difficult to treat in terms of killing tumors and repairing bone defects. Compared with other hyperthermia strategies, magnetic hyperthermia has become an effective therapy for treating malignant bone tumors due to its lack of depth limitations. However, tumor cells express heat shock protein (HSP) to resist hyperthermia, which reduces its curative effect. Competitive ATP consumption can reduce HSP production; fortunately, the basic principle of starvation therapy by glucose oxidase (GOx) is consuming glucose to control ATP production, thereby restricting HSP generation. We developed a triple-functional magnetic gel (Fe3O4/GOx/MgCO3@PLGA) as a magnetic bone repair hydrogels (MBRs) with liquid‒solid phase transition capability to drive magneto-thermal effects to simultaneously trigger GOx release and inhibit ATP production, reducing HSP expression and thereby achieving synergistic therapy for osteosarcoma treatment. Moreover, magnetic hyperthermia improves the effect of starvation therapy on the hypoxic microenvironment and achieves a reciprocal strengthening therapeutic effect. We further demonstrated that in situ MBRs injection effectively suppressed tumor growth in 143B osteosarcoma tumor-bearing mice and an in-situ bone tumor model in the rabbit tibial plateau. More importantly, our study also showed that liquid MBRs could effectively match bone defects and accelerate their reconstruction via magnesium ion release and enhanced osteogenic differentiation to augment the regeneration of bone defects caused by bone tumors, which generates fresh insight into malignant bone tumor treatment and the acceleration of bone defect repair.


Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Osteossarcoma , Camundongos , Animais , Coelhos , Osteogênese , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Regeneração Óssea , Proteínas de Choque Térmico/metabolismo , Fenômenos Magnéticos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Microambiente Tumoral
14.
J Nanobiotechnology ; 21(1): 59, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810074

RESUMO

Chemodynamic therapy of cancer is limited by insufficient endogenous H2O2 generation and acidity in the tumor microenvironment (TME). Herein, we developed a biodegradable theranostic platform (pLMOFePt-TGO) involving composite of dendritic organosilica and FePt alloy, loaded with tamoxifen (TAM) and glucose oxidase (GOx), and encapsulated by platelet-derived growth factor-B (PDGFB)-labeled liposomes, that effectively uses the synergy among chemotherapy, enhanced chemodynamic therapy (CDT), and anti-angiogenesis. The increased concentration of glutathione (GSH) present in the cancer cells induces the disintegration of pLMOFePt-TGO, releasing FePt, GOx, and TAM. The synergistic action of GOx and TAM significantly enhanced the acidity and H2O2 level in the TME by aerobiotic glucose consumption and hypoxic glycolysis pathways, respectively. The combined effect of GSH depletion, acidity enhancement, and H2O2 supplementation dramatically promotes the Fenton-catalytic behavior of FePt alloys, which, in combination with tumor starvation caused by GOx and TAM-mediated chemotherapy, significantly increases the anticancer efficacy of this treatment. In addition, T2-shortening caused by FePt alloys released in TME significantly enhances contrast in the MRI signal of tumor, enabling a more accurate diagnosis. Results of in vitro and in vivo experiments suggest that pLMOFePt-TGO can effectively suppress tumor growth and angiogenesis, thus providing an exciting potential strategy for developing satisfactory tumor theranostics.


Assuntos
Ferroptose , Neoplasias , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Apoptose , Glucose Oxidase/metabolismo
15.
J Nanobiotechnology ; 20(1): 225, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551609

RESUMO

BACKGROUND: By hindering energy supply pathway for cancer cells, an alternative therapeutic strategy modality is put forward: tumor starvation therapy. And yet only in this blockade of glucose supply which is far from enough to result in sheer apoptosis of cancer cells. RESULTS: In an effort to boost nutrient starvation-dominated cancer therapy, here a novel mitochondrial Ca2+ modulator Alg@CaP were tailor-made for the immobilization of Glucose oxidase for depriving the intra-tumoral glucose, followed by the loading of Curcumin to augment mitochondrial Ca2+ overload to maximize the therapeutic efficiency of cancer starvation therapy via mitochondrial dysfunctions. Also, autophagy inhibitors Obatoclax were synchronously incorporated in this nano-modulator to highlight autophagy inhibition. CONCLUSION: Here, a promising complementary modality for the trebling additive efficacy of starvation therapy was described for cutting off the existing energy sources in starvation therapy through Curcumin-augmented mitochondrial Ca2+ overload and Obatoclax-mediated autophagy inhibition.


Assuntos
Curcumina , Neoplasias , Inanição , Apoptose , Autofagia , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Glucose , Humanos , Indóis , Neoplasias/terapia , Nutrientes , Pirróis
16.
J Nanobiotechnology ; 20(1): 264, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672821

RESUMO

The application of chemodynamic therapy (CDT) for cancer is a serious challenge owing to the low efficiency of the Fenton catalyst and insufficient H2O2 expression in cells. Herein, we fabricated a PDGFB targeting, biodegradable FePt alloy assembly for magnetic resonance imaging (MRI)-guided chemotherapy and starving-enhanced chemodynamic therapy for cancer using PDGFB targeting, pH-sensitive liposome-coated FePt alloys, and GOx (pLFePt-GOx). We found that the Fenton-catalytic activity of FePt alloys was far stronger than that of traditional ultrasmall iron oxide nanoparticle (UION). Upon entry into cancer cells, pLFePt-GOx nanoliposomes degraded into many tiny FePt alloys and released GOx owing to the weakly acidic nature of the tumor microenvironment (TME). The released GOx-mediated glucose consumption not only caused a starvation status but also increased the level of cellular H2O2 and acidity, promoting Fenton reaction by FePt alloys and resulting in an increase in reactive oxygen species (ROS) accumulation in cells, which ultimately realized starving-enhanced chemodynamic process for killing tumor cells. The anticancer mechanism of pLFePt-GOx involved ROS-mediated apoptosis and ferroptosis, and glucose depletion-mediated starvation death. In the in vivo assay, the systemic delivery of pLFePt-GOx showed excellent antitumor activity with low biological toxicity and significantly enhanced T2-weighted magnetic resonance imaging (MRI) signal of the tumor, indicating that pLFePt-GOx can serve as a highly efficient theranostic tool for cancer. This work thus describes an effective, novel multi-modal cancer theranostic system.


Assuntos
Nanopartículas , Neoplasias , Ligas , Linhagem Celular Tumoral , Glucose , Humanos , Peróxido de Hidrogênio/metabolismo , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(2): 241-250, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462463

RESUMO

Conventional therapies for malignant tumors have limitations and disadvantages. In recent years, the cancer starvation therapy has emerged which intends to deprive cancer cells of nutritional supply. There are several approaches to"starve" cancer cells: to intervene tumor angiogenesis by targeted inhibition of angiogenic factors or their receptors and integrins; to block the blood supply of cancer cells by embolizing or compressing blood vessels; to intervene metabolic process of cancer cells by inhibition of the signal pathways of mitochondrial serine-glycine-one earbon metabolism, glycolysis and amino acid metabolism; cancer starvation therapy can be employed with oxidation therapy, chemotherapy, sonodynamic therapy, anti-autophagy therapy or other therapies to achieve synergistic effects. This article reviews the research progress of cancer starvation therapy in recent years and discusses the existing problems.


Assuntos
Inibidores da Angiogênese , Neoplasias , Aminoácidos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Glicina/uso terapêutico , Humanos , Integrinas/uso terapêutico , Neoplasias/tratamento farmacológico , Serina/uso terapêutico
18.
Small ; 17(34): e2100753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34259382

RESUMO

Tumor vasculature has long been considered as an extremely valuable therapeutic target for cancer therapy, but how to realize controlled and site-specific drug release in tumor blood vessels remains a huge challenge. Despite the widespread use of nanomaterials in constructing drug delivery systems, they are suboptimal in principle for meeting this demand due to their easy blood cell adsorption/internalization and short lifetime in the systemic circulation. Here, natural red blood cells (RBCs) are repurposed as a remote-controllable drug vehicle, which retains RBC's morphology and vessel-specific biodistribution pattern, by installing photoactivatable molecular triggers on the RBC membrane via covalent conjugation with a finely tuned modification density. The molecular triggers can burst the RBC vehicle under short and mild laser irradiation, leading to a complete and site-specific release of its payloads. This cell-based vehicle is generalized by loading different therapeutic agents including macromolecular thrombin, a blood clotting-inducing enzyme, and a small-molecule hypoxia-activatable chemodrug, tirapazamine. In vivo results demonstrate that the repurposed "anticancer RBCs" exhibit long-term stability in systemic circulation but, when tumors receive laser irradiation, precisely releases their cargoes in tumor vessels for thrombosis-induced starvation therapy and local deoxygenation-enhanced chemotherapy. This study proposes a general strategy for blood vessel-specific drug delivery.


Assuntos
Liberação Controlada de Fármacos , Reposicionamento de Medicamentos , Vasos Sanguíneos , Eritrócitos , Distribuição Tecidual
19.
Small ; 17(51): e2105237, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791793

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Linfócitos T , Microambiente Tumoral
20.
J Nanobiotechnology ; 19(1): 87, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771168

RESUMO

BACKGROUND: Sonodynamic therapy (SDT) is an emerging non-invasive therapeutic technique. SDT-based cancer therapy strategies are presently underway, and it may be perceived as a promising approach to improve the efficiency of anti-cancer treatment. In this work, multifunctional theranostic nanoparticles (NPs) were synthesized for synergistic starvation therapy and SDT by loading glucose oxidase (GOx, termed G) and 5,10,15,20-tetrakis (4-chlorophenyl) porphyrin) Cl (T (p-Cl) PPMnCl, termed PMnC) in Poly (lactic-co-glycolic) acid (PLGA) NPs (designated as MG@P NPs). RESULTS: On account of the peroxidase-like activity of PMnC, MG@P NPs can catalyze hydrogen peroxide (H2O2) in tumor regions to produce oxygen (O2), thus enhancing synergistic therapeutic effects by accelerating the decomposition of glucose and promoting the production of cytotoxic singlet oxygen (1O2) induced by ultrasound (US) irradiation. Furthermore, the NPs can also serve as excellent photoacoustic (PA)/magnetic resonance (MR) imaging contrast agents, effectuating imaging-guided cancer treatment. CONCLUSION: Multifunctional MG@P NPs can effectuate the synergistic amplification effect of cancer starvation therapy and SDT by hypoxia modulation, and act as contrast agents to enhance MR/PA dual-modal imaging. Consequently, MG@P NPs might be a promising nano-platform for highly efficient cancer theranostics.


Assuntos
Hipóxia/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Inanição , Animais , Antineoplásicos/uso terapêutico , Glicemia , Linhagem Celular Tumoral , Contenção de Riscos Biológicos , Feminino , Humanos , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Nanopartículas/química , Oxigênio , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA