Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 119: 225-233, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463770

RESUMO

Based on thermal alkaline hydrolysis (TAH), a novel strategy of stepwise hydrolysis was developed to improve carbon releasing efficiency from waste activated sludge (WAS). By stepwise increasing hydrolysis intensity, conventional sludge hydrolysis (the control) was divided into four stages for separately recovering sludge carbon sources with different bonding strengths, namely stage 1 (60 °C, pH 6.0-8.0), stage 2 (80 °C, pH 6.0-8.0), stage 3 (80 °C, pH 10.0) and stage 4 (90 °C, pH 12.0). Results indicate stepwise hydrolysis could enhance the amount of released soluble chemical oxygen demand (SCOD) for almost 2 times, from 7200 to 14,693 mg/L, and the released carbon presented better biodegradability, with BOD/COD of 0.47 and volatile fatty acids (VFAs) yield of 0.37 g VFAs/g SCOD via anaerobic fermentation. Moreover, stepwise hydrolysis also improved the dewaterability of hydrolyzed sludge, capillary suction time (CST) reducing from 2500 to 1600 s. Economic assessment indicates stepwise hydrolysis shows less alkali demand and lower thermal energy consumption than those of the control. Furthermore, results of this study help support the concepts of improving carbon recovery in wastewater by manipulating WAS composition and the idea of classifiably recovering the nutrients in WAS.


Assuntos
Carbono/química , Hidrólise , Esgotos , Reatores Biológicos , Concentração de Íons de Hidrogênio , Purificação da Água
2.
ACS Appl Mater Interfaces ; 8(14): 9395-404, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27010186

RESUMO

In this work, we have, for the first time, developed a facile wet-chemical route to obtain a novel photocatalytic material of tantalum oxyfluoride hierarchical nanostructures composed of amorphous cores and single crystalline TaO2F nanorod shells (ACHNs) by regulating the one-step hydrothermal process of TaF5 in a mixed solution of isopropanol (i-PrOH) and H2O. In this approach, elaborately controlling the reaction temperature and volume ratio of i-PrOH and H2O enabled TaF5 to transform into intermediate coordination complex ions of [TaOF3·2F](2-) and [TaF7](2-), which subsequently produced tantalum oxyfluoride ACHNs via a secondary nucleation and growth due to a stepwise change in hydrolysis rates of the two complex ions. Because of the unique chemical composition, crystal structure and micromorphology, the as-prepared tantalum oxyfluoride ACHNs show a more negative flat band potential, an accelerated charge transfer, and a remarkable surface area of 152.4 m(2) g(-1) contributing to increased surface reaction sites. As a result, they exhibit a photocatalytic activity for hydrogen production up to 1.95 mmol h(-1) g(-1) under the illumination of a simulated solar light without any assistance of co-catalysts, indicating that the as-prepared tantalum oxyfluoride ACHNs are a novel promising photocatalytic material for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA