RESUMO
Familial hypercholesterolemia (FH) is a genetic disease that leads to elevated low-density lipoprotein cholesterol levels and risk of coronary heart disease. Current therapeutic options for FH remain relatively limited and only partially effective in both lowering low-density lipoprotein cholesterol and modifying coronary heart disease risk. The unique characteristics of nucleic acid therapies to target the underlying cause of the disease can offer solutions unachievable with conventional medications. DNA- and RNA-based therapeutics have the potential to transform the care of patients with FH. Recent advances are overcoming obstacles to clinical translation of nucleic acid-based medications, including greater stability of the formulations as well as site-specific delivery, making gene-based therapy for FH an alternative approach for treatment of FH.
Assuntos
Terapia Genética , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Terapia Genética/métodos , Animais , LDL-Colesterol/sangueRESUMO
Schizophrenia, affecting approximately 1% of the global population, is often treated with olanzapine. Despite its efficacy, olanzapine's prolonged use has been associated with an increased risk of cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanism remains unclear. Proprotein convertase subtilisin kexin type 9 (PCSK9) plays a crucial role in lipid metabolism and is involved in NAFLD pathogenesis via an unknown mechanism. This study aims to investigate the role of PCSK9 in olanzapine-induced NAFLD. C57BL/6J mice and HepG2 and AML12 cell lines were treated with varying concentrations of olanzapine to examine the effects of olanzapine on PCSK9 and lipid metabolism. PCSK9 levels were manipulated using recombinant proteins, plasmids, and small interfering RNAs in vitro, and the effects on hepatic lipid accumulation and gene expression related to lipid metabolism were assessed. Olanzapine treatment significantly increased PCSK9 levels in both animal and cell line models, correlating with elevated lipid accumulation. PCSK9 manipulation demonstrated its central role in mediating hepatic steatosis through both receptor-dependent pathways (impacting NPC1L1) and receptor-independent pathways (affecting lipid synthesis, uptake, and cholesterol biosynthesis). Interestingly, upregulation of SREBP-1c, rather than SREBP-2, was identified as a key driver of PCSK9 increase in olanzapine-induced NAFLD. Our findings establish PCSK9 as a pivotal factor in olanzapine-induced NAFLD, influencing both receptor-related and metabolic pathways. This highlights PCSK9 inhibitors as potential therapeutic agents for managing NAFLD in schizophrenia patients treated with olanzapine.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Pró-Proteína Convertase 9 , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Olanzapina/efeitos adversos , Pró-Proteína Convertase 9/genética , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Metabolismo dos Lipídeos , Homeostase , Triglicerídeos , Colesterol , LipídeosRESUMO
The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.
Assuntos
Citocinas , Endossomos , Interferon Tipo I , Transdução de Sinais , Streptococcus suis , Receptor 2 Toll-Like , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Streptococcus suis/metabolismo , Interferon Tipo I/metabolismo , Receptor 2 Toll-Like/metabolismo , Citocinas/metabolismo , Animais , Endossomos/metabolismo , Camundongos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos Endogâmicos C57BLRESUMO
Cardiovascular disorders are still challenging and are among the deadly diseases. As a major risk factor for atherosclerotic cardiovascular disease, dyslipidemia, and high low-density lipoprotein cholesterol in particular, can be prevented primary and secondary by lipid-lowering medications. Therefore, insights are still needed into designing new drugs with minimal side effects. Proprotein convertase subtilisin/kexin 9 (PCSK9) enzyme catalyses protein-protein interactions with low-density lipoprotein, making it a critical target for designing promising inhibitors compared to statins. Therefore, we screened for potential compounds using a redesigned PCSK9 conformational behaviour to search for a significantly extensive chemical library and investigated the inhibitory mechanisms of the final compounds using integrated computational methods, from ligand essential functional group screening to all-atoms MD simulations and MMGBSA-based binding free energy. The inhibitory mechanisms of the screened compounds compared with the standard inhibitor. K31 and K34 molecules showed stronger interactions for PCSK9, having binding energy (kcal/mol) of -33.39 and -63.51, respectively, against -27.97 of control. The final molecules showed suitable drug-likeness, non-mutagenesis, permeability, and high solubility values. The C-α atoms root mean square deviation and root mean square fluctuation of the bound-PCSK9 complexes showed stable and lower fluctuations compared to apo PCSK9. The findings present a model that unravels the mechanism by which the final molecules proposedly inhibit the PCSK9 function and could further improve the design of novel drugs against cardiovascular diseases.
Assuntos
Aterosclerose , Simulação de Dinâmica Molecular , Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Desenho de Fármacos , Doenças Cardiovasculares/tratamento farmacológico , FarmacóforoRESUMO
This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.
Assuntos
LDL-Colesterol , Regulação para Baixo , Raios Infravermelhos , Pró-Proteína Convertase 9 , Canais de Cátion TRPV , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Células Hep G2 , Canais de Cátion TRPV/metabolismo , LDL-Colesterol/metabolismo , Regulação para Baixo/efeitos da radiaçãoRESUMO
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a ß-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the ß-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
RESUMO
Lipid disorders play a critical role in the intricate development of atherosclerosis and its clinical consequences, such as coronary heart disease and stroke. These disorders are responsible for a significant number of deaths in many adult populations worldwide. Familial hypercholesterolemia (FH) is a genetic disorder that causes extremely high levels of LDL cholesterol. The most common mutations occur in genes responsible for low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). While genetic testing is a dependable method for diagnosing the disease, it may not detect primary mutations in 20%-40% of FH cases.
Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Humanos , Pró-Proteína Convertase 9/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , LDL-Colesterol/genética , Patrimônio Genético , Receptores de LDL/genéticaRESUMO
BACKGROUND: Melanoma proliferation is partly attributed to dysregulated lipid metabolism. The effectiveness of lipid-lowering drugs in combating cutaneous melanoma (CM) is a subject of ongoing debate in both in vitro and clinical studies. METHOD: This study aims to evaluate the causal relationship between various lipid-lowering drug targets, namely 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, targeted by statins), Proprotein convertase subtilisin/kexin type 9 (PCSK9, targeted by alirocumab and evolocumab), and Niemann-Pick C1-like 1 (NPC1L1, targeted by ezetimibe), and the outcomes of cutaneous melanoma. To mimic the effects of lipid-lowering drugs, we utilized two genetic tools: analysis of polymorphisms affecting the expression levels of drug target genes, and genetic variations linked to low-density lipoprotein cholesterol levels and drug target genes. These variations were sourced from genome-wide association studies (GWAS). We applied Summary-data-based Mendelian Randomization (SMR) and Inverse Variance Weighted Mendelian Randomization (IVW-MR) to gauge the effectiveness of these drugs. RESULTS: Our findings, with SMR results showing an odds ratio (OR) of 1.44 (95% CI: 1.08-1.92; P = 0.011) and IVW-MR results indicating an OR of 1.56 (95% CI: 1.10-2.23; P = 0.013), demonstrate a positive correlation between PCSK9 expression and increased risk of CM. However, no such correlations were observed in other analyses. CONCLUSION: The study concludes that PCSK9 plays a significant role in the development of CM, and its inhibition is linked to a reduced risk of the disease.
Assuntos
Estudo de Associação Genômica Ampla , Hidroximetilglutaril-CoA Redutases , Melanoma , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9 , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Pró-Proteína Convertase 9/genética , Hidroximetilglutaril-CoA Redutases/genética , Melanoma Maligno Cutâneo , Anticorpos Monoclonais Humanizados/uso terapêutico , Polimorfismo de Nucleotídeo Único , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ezetimiba/uso terapêutico , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologiaRESUMO
Measuring the activity of proteases is essential for investigating both the physiological functions and commercial applications of these enzymes. In contrast to the numerous protease assays that are based on chromogenic or fluorogenic peptide substrates, there is a lack of approaches to monitor degradation of proteins in real time. Here we report a protease assay where SYPRO Orange is employed as a fluorogenic probe to follow proteolysis. The functionality of the assay was demonstrated with the two subtilases of varying thermostability, using four different protein substrates. The assay is compatible with a real-time PCR instrument which allows continuous fluorescence measurements in low-volume samples even at high temperatures. This makes the assay especially suitable for high-throughput characterization of thermostable proteases.
RESUMO
Our previous research revealed that an increase in PCSK9 is linked to aggravated inflammation in the kidneys of mice affected by a high-fat diet and streptozotocin (HFD/STZ) or in HGPA-induced HK-2 cells. Furthermore, the cGAS/STING pathway has been reported to be involved in diabetic nephropathy (DN). Therefore, in this study, we aimed to examine the correlation between the proinflammatory effect of PCSK9 and the cGAS/STING pathway in DN. We used PCSK9 mAbs to inhibit PCSK9 in vivo and PCSK9 siRNA in vitro and measured the inflammatory phenotype in HFD/STZ-treated mice or HGPA-induced HK-2 cells, and observed decreased blood urea nitrogen, creatinine, UACR, and kidney injury in response to the PCSK9 mAb in HFD/STZ-treated mice. Moreover, IL-1 ß, MCP-1, and TNF-α levels were reduced by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. We observed increased mtDNA damage and activation of the cGAS-STING signaling pathway during DN, as well as the downstream targets p-TBK1, p-NF-κB p65, and IL-1ß. In a further experiment with an HGPA-induced DN model in HK-2 cells, we revealed that mtDNA damage was increased, which led to the activation of the cGAS/STING system and its downstream targets. Notably, the cGAS-STING signaling pathway was inhibited by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. In addition, inhibition of STING with C-176 in HGPA-induced HK-2 cells markedly blocked inflammation. In conclusion, we report for the first time that PCSK9 triggers mitochondrial DNA damage and activates the cGAS-STING pathway in DN, which leads to a series of inflammation cascades. PCSK9-targeted intervention can effectively reduce DN inflammation and delay its progression. Moreover, the inhibition of STING significantly abrogated the inflammation triggered by HGPA in HK-2 cells.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Pró-Proteína Convertase 9 , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , DNA Mitocondrial/metabolismo , Inflamação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pró-Proteína Convertase 9/genética , Humanos , Linhagem CelularRESUMO
Randomized clinical trials (RCTs) of PCSK9 monoclonal antibody(mAb) specifically for Chinese patients have been limited. This multi-center RCT is to clarify the efficacy and safety of a novel mAb, Ebronucimab, in Chinese patients. Patients diagnosed with primary hypercholesterolemia, including Heterozygous Familial Hypercholesterolemia, or mixed dyslipidemia, were categorized by ASCVD risk and randomly assigned at a ratio of 2:1:2:1 to receive Ebronucimab 450â¯mg or matching placebo every 4 weeks (Q4W), or Ebronucimab 150â¯mg or matching placebo every 2 weeks (Q2W). The primary outcome was the percentage change of LDL-C from baseline to week 12 for all groups. The least squares mean reduction difference (95â¯%CI) in LDL-C from baseline to week 12 of Ebronucimab 450â¯mg Q4W and Ebronucimab 150â¯mg Q2W groups versus the placebo group was -59.13 (-64.103, -54.153) (Adjusted p<0.0001) and -60.43 (-65.450, -55.416) (Adjusted p<0.0001), respectively. Meanwhile, the Ebronucimab group exhibited notably high rates in reaching LDL-C goals of each cardiovascular risk stratification. In addition, Ebronucimab effectively improved other lipid panel. During the double-blind treatment period, relatively frequently reported adverse events (AEs) were injection site reactions (ISR), urinary tract infection, and hyperuricemia (Incidence rate are 6.9â¯%, 4.8â¯% and 3.5â¯%). Among treatment-associated AEs, only injection site reactions (ISR) occurred more in the dose groups. In conclusion, Ebronucimab, with either 450â¯mg Q4W or 150â¯mg Q2W doses, demonstrated significant efficacy in lowering serum LDL-C level with a favorable safety and immunogenicity profile among hypercholesterolemic patients.
Assuntos
Anticorpos Monoclonais Humanizados , LDL-Colesterol , Hipercolesterolemia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Anticolesterolemiantes/efeitos adversos , China , LDL-Colesterol/sangue , Método Duplo-Cego , População do Leste Asiático , Hipercolesterolemia/tratamento farmacológico , Pró-Proteína Convertase 9 , Resultado do TratamentoRESUMO
INTRODUCTION: Curative lung resection remains the key therapeutic strategy for early-stage non-small cell lung cancer (NSCLC). However, a proportion of patients still experience variable outcomes and eventually develop recurrence or die from their disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been identified as a deleterious factor that inhibits tumor cells apoptosis and leads to reduction of lymphocyte infiltration. However, there has been no research on the predicted role of PCSK9 as an immunohistochemical biomarker with survival in resectable NSCLC. METHODS: One hundred sixty-three patients with resectable NSCLC were retrospectively reviewed, and PCSK9 expression of resected NSCLC was analyzed by immunohistochemistry using tissue microarrays. RESULTS: PCSK9 was associated with recurrence (42.1% relapsed in the PCSK9lo group versus 57.9% relapsed in the PCSK9hi group, P = 0.006) and survival status (39.6% dead in PCSK9lo group versus 60.4% dead in PCSK9hi group, P = 0.004) in patients with resectable NSCLC. Moreover, resectable NSCLC patients with higher PCSK9 expression in tumor tissue experienced poorer disease-free survival (median disease-free survival: 10.5 versus 25.2 mo, hazard ratio = 1.620, 95% confidence interval: 1.124-2.334) and overall suvrival (median overall suvrival: 20.0 versus 54.1 mo, hazard ratio = 1.646, 95% confidence interval: 1.101-2.461) compared to those with lower PCSK9 expression. CONCLUSIONS: High PCSK9 expression of tumor was correlated with recurrence and worse survival status of resectable NSCLC in our retrospective study, which indicated that PCSK9 in NSCLC may be an immunohistochemical biomarker of poor prognosis for patients with resectable NSCLC. Further large-scale prospective studies are warranted to establish these results.
Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Recidiva Local de Neoplasia , Pró-Proteína Convertase 9 , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Masculino , Feminino , Pró-Proteína Convertase 9/metabolismo , Pessoa de Meia-Idade , Idoso , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Prognóstico , Imuno-HistoquímicaRESUMO
Cellular lipid membranes serve as the primary barrier preventing viral infection of the host cell and provide viruses with a critical initial point of contact. Occasionally, viruses can utilize lipids as viral receptors. Viruses depend significantly on lipid rafts for infection at virtually every stage of their life cycle. The pivotal role that proprotein convertase subtilisin/kexin Type 9 (PCSK9) plays in cholesterol homeostasis and atherosclerosis, primarily by post-transcriptionally regulating hepatic low-density lipoprotein receptor (LDLR) and promoting its lysosomal degradation, has garnered increasing interest. Conversely, using therapeutic, fully humanized antibodies to block PCSK9 leads to a significant reduction in high LDL cholesterol (LDL-C) levels. The Food and Drug Administration (FDA) has approved PCSK9 inhibitors, including inclisiran (Leqvio®), alirocumab (Praluent), and evolocumab (Repatha). At present, active immunization strategies targeting PCSK9 present a compelling substitute for passive immunization through the administration of antibodies. In addition to the current inquiry into the potential therapeutic application of PCSK9 inhibition in human immunodeficiency virus (HIV)-infected patients for hyperlipidemia associated with HIV and antiretroviral therapy (ART), preclinical research suggests that PCSK9 may also play a role in inhibiting hepatitis C virus (HCV) replication. Furthermore, PCSK9 inhibition has been suggested to protect against dengue virus (DENV) potentially and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses. Recent evidence regarding the impact of PCSK9 on a variety of viral infections, including HCV, HIV, DENV, and SARS-CoV-2, is examined in this article. As a result, PCSK9 inhibitors and vaccines may serve as viable host therapies for viral infections, as our research indicates that PCSK9 is significantly involved in the pathogenesis of viral infections.
Assuntos
Infecções por HIV , Hepatite C , Inibidores de PCSK9 , Humanos , Hepatite C/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Inibidores de PCSK9/farmacologia , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo , SubtilisinasRESUMO
There is overwhelming clinical and genetic evidence supporting the concept that low-density-lipoprotein cholesterol should be as low as possible for as long as possible in patients at very high cardiovascular risk. Despite the wide availability of effective lipid-lowering therapies, the majority of patients still fail to reach guideline-based lipid goals. Advances in novel approaches targeting PCSK9 (proprotein convertase subtilisin/kexin type 9) through small-interfering RNA and genome editing hold the potential to bridge this gap, by offering long-acting alternatives, which may overcome adherence and other challenges in the current chronic care model. In this review, we discuss the history of targeting PCSK9 with the use of mRNA and small-interfering ribonucleic acid. We also shed light on targeting PCSK9 with genome editing, including discussion of the VERVE-101 clustered regularly interspaced short palindromic repeats-base editing medicine currently being evaluated in a clinical trial and others in development.
Assuntos
Edição de Genes , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , LDL-Colesterol , RNA Interferente Pequeno/genéticaRESUMO
BACKGROUND: Real-world utilization data for evolocumab, the first proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor to be introduced in Japan in 2016, to date are limited. This study aimed to clarify the current real-world patient user profiles of evolocumab based on large-scale health claims data. METHODS AND RESULTS: This retrospective database study examined patients from a health administrative database (MDV database) who initiated evolocumab between April 2016 (baseline) and November 2021. Characteristics and clinical profiles of this patient population are described. In all, 4,022 patients were included in the final analysis. Most evolocumab prescriptions occurred in the outpatient setting (3,170; 78.82%), and 940 patients (23.37%) had a recent diagnosis of familial hypercholesterolemia. Common recent atherosclerotic cardiovascular disease events at baseline included myocardial infarction (1,633; 40.60%), unstable angina (561; 13.95%), and ischemic stroke (408; 10.14%). Comorbidity diseases included hypertension (2,504; 62.26%), heart failure (1,750; 43.51%), diabetes (1,199; 29.81%), and chronic kidney disease (297; 7.38%). Among the lipid-lowering regimens concomitant with evolocumab, ezetimibe+statin was used most frequently (1,281; 31.85%), followed by no concomitant lipid-lowering regimen (1,190; 29.59%), statin (950; 23.62%), and ezetimibe (601; 14.94%). The median evolocumab treatment duration for all patients was 260 days (interquartile range 57-575 days). CONCLUSIONS: This study provides real-world insights into evolocumab utilization in Japan for optimizing patient care and adherence to guideline-based therapies to better address hypercholesterolemia in Japan.
Assuntos
Anticorpos Monoclonais Humanizados , Anticolesterolemiantes , Inibidores de PCSK9 , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Japão/epidemiologia , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Anticolesterolemiantes/uso terapêutico , Bases de Dados Factuais , Adulto , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/sangue , Ezetimiba/uso terapêutico , Pró-Proteína Convertase 9RESUMO
BACKGROUND: Proprotein convertase subtilisin/kexin type 9 inhibitors stabilize vulnerable plaque, reducing cardiovascular events. However, manual optical coherence tomography (OCT) analysis of drug efficacy is challenging because of signal attenuation within lipid plaques. METHODS AND RESULTS: Twenty-four patients with thin-cap fibroatheroma were prospectively enrolled and randomized to receive alirocumab (75 mg every 2 weeks) plus rosuvastatin (10 mg/day) or rosuvastatin (10 mg/day) alone. OCT images at baseline and 36 weeks were analyzed manually and with artificial intelligence (AI)-aided software. AI-aided OCT analysis showed significantly greater percentage changes in the alirocumab+rosuvastatin vs. rosuvastatin-alone group in fibrous cap thickness (FCT; median [interquartile range] 212.3% [140.5-253.5%] vs. 88.6% [63.0-119.6%]; P=0.006) and lipid volume (median [interquartile range] -30.8% [-51.8%, -16.6%] vs. -2.1% [-21.6%, 4.3%]; P=0.015). Interobserver reproducibility for changes in minimum FCT and lipid index was relatively low for manual analysis (interobserver intraclass correlation coefficient [ICC] 0.780 and 0.499, respectively), but high for AI-aided analysis (interobserver ICC 0.999 and 1.000, respectively). Agreements between manual and AI-aided OCT analyses of FCT and the lipid index were acceptable (concordance correlation coefficients 0.859 and 0.833, respectively). CONCLUSIONS: AI-aided OCT analysis objectively showed greater plaque stabilization of adding alirocumab to rosuvastatin. Our results highlight the benefits of a fully automated AI-assisted approach for assessing drug efficacy, offering greater objectivity in evaluating serial changes in plaque stability vs. conventional OCT assessment.
Assuntos
Anticorpos Monoclonais Humanizados , Inteligência Artificial , Doença da Artéria Coronariana , Placa Aterosclerótica , Rosuvastatina Cálcica , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Rosuvastatina Cálcica/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores de PCSK9 , Estudos Prospectivos , Quimioterapia CombinadaRESUMO
Homozygous familial hypercholesterolemia (HoFH), is a rare genetic disorder characterized by dual mutations in the low-density lipoprotein receptor (LDLR) gene, leading to dysfunctional or absent LDLRs, often accompanied by severe premature Atherosclerotic Cardiovascular Disease (ASCVD) and exhibiting refractoriness to aggressive pharmacological interventions. Double filtration plasmapheresis (DFPP), a form of lipoprotein apheresis (LA), has been effectively utilized as an adjunctive treatment modality to reduce serum LDL-C levels in refractory cases of HoFH. Here, we report a case of a 36-year-old female with HoFH who developed xanthomas on her limbs and waist at age 7. Despite maximum-tolerated doses of statins from age 32, combined with ezetimibe and evolocumab, her LDL-C levels remained critically elevated at 12-14 mmol/L. Her genetic testing confirmed a homozygous LDLR mutation. At 35 years old, she experienced exertional chest pain, and percutaneous coronary intervention revealed severe calcific left main stenosis, necessitating stent implantation. Subsequently, she initiated once every 1-2 months DFPP. Pre-DFPP, her LDL-C and total cholesterol (TC) levels were 13.82 ± 3.28 and 15.45 ± 0.78 mmol/L, respectively. Post-DFPP, her LDL-C and TC levels significantly decreased to 2.43 ± 0.33 mmol/L (81.76 ± 4.11% reduction) and 3.59 ± 0.41 mmol/L (76.76 ± 2.75% reduction), respectively. Lipoprotein (a) and triglycerides also decreased by 89.10 ± 1.39% and 42.29 ± 15.68%,respectively. Two years later, there was no progression of coronary artery disease, and her symptoms and xanthomas regressed significantly. Collectively, DFPP effectively reduces LDL-C levels in refractory cases of HoFH and contributes to delaying ASCVD progression, representing an efficacious adjunctive therapeutic modality.
RESUMO
BACKGROUND: Rapid progression of non-target lesions (NTLs) leads to a high incidence of NTL related cardiac events post-PCI, which accounting half of the recurrent cardiac events. It is important to identify the risk factors and establish an accurate clinical prediction model for the rapid progression of NTLs post-PCI. PCSK9 inhibitors lower LDL-c levels significantly, also show the anti-inflammation effect, and may have the potential to reduce the rapid progression of NTLs post-PCI. We tried to test this hypothesis and explore the potential mechanisms. METHODS: This retrospective study included 1250 patients who underwent the first PCI and underwent repeat coronary angiography for recurrence of chest pain within 24 months. General characteristics, laboratory tests and inflammatory factors(IL-10, IL-6, IL-8, IL-1ß, sIL-2R, and TNF-α) were collected. Machine learning (LASSO regression) was mainly employed to select the important characteristic risk factors for the rapid progression of NTLs post-PCI and build prediction models. Finally, mediator analysis was employed to explore the potential mechanisms by which PCSK9 inhibitors reduce the rapid progression of NTLs post-PCI. RESULTS: There were more diabetes, less beta-blockers and PCSK9 inhibitors application, higher HbA1c, LDL-c, ApoB, TG, TC, uric acid, hs-CRP, TNF-α, IL-6, IL-8, and sIL-2R in NTL progressed group. LDL-c, hs-CRP, IL-8, and sIL-2R were characteristic risk factors for the rapid progression of NTLs post-PCI, combining LDL-c, hs-CRP, IL-8, and sIL-2R builds the optimal model for predicting the rapid progression of NTLs post-PCI (AUC = 0.632). LDL-c had a clear and incomplete mediating effect (95% CI, mediating effect: 51.56%) in the reduction of the progression of NTLs by PCSK9 inhibitors, and there was a possible mediating effect of IL-8 (90% CI), and sIL-2R (90% CI). CONCLUSIONS: LDL-c, hs-CRP, IL-8, and sIL-2R may be the key characteristic risk factors for the rapid progression of NTLs post-PCI, and combining these parameters might predict the rapid progression of NTLs post-PCI. The application of PCSK9 inhibitors had a negative correlation with the rapid progression of NTLs. In addition to the significant LDL-c-lowering, PCSK9 inhibitors may reduce the rapid progression of NTLs by reducing local inflammation of plaque. TRIAL REGISTRATION: ChiCTR2200058529; Date of registration: 2022-04-10.
Assuntos
Biomarcadores , LDL-Colesterol , Doença da Artéria Coronariana , Progressão da Doença , Mediadores da Inflamação , Inibidores de PCSK9 , Intervenção Coronária Percutânea , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Biomarcadores/sangue , Resultado do Tratamento , Idoso , Fatores de Tempo , Fatores de Risco , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/terapia , Intervenção Coronária Percutânea/efeitos adversos , LDL-Colesterol/sangue , Medição de Risco , Mediadores da Inflamação/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/sangue , Dislipidemias/diagnóstico , Angiografia Coronária , Pró-Proteína Convertase 9RESUMO
INTRODUCTION: This study attempted to investigate how proprotein convertase subtilisin/kexin type 9 (PCSK9) influences the stemness of stomach adenocarcinoma (STAD) cells. METHODS: CCK-8 and sphere-formation assays were used to detect cell viability and stemness. qRT-PCR and Western blot were used to detect PCSK9 and TEAD4 expression. The binding relationship was verified by dual-luciferase and chromatin immunoprecipitation assays. The effect of TEAD4 activating PCSK9 on the stemness of STAD cells was detected by bioinformatics, BODIPY 493/503, Oil red O, Western blot, and kits. In vivo experiments verified the role of the TEAD4/PCSK9 axis in tumor formation in nude mice. RESULTS: PCSK9 and TEAD4 were highly expressed in STAD. PCSK9 was enriched in the fatty acid metabolism (FAM) pathway. PCSK9 activated the fatty acid metabolism and promoted the proliferation and stemness of STAD cells. TEAD4 as a transcription factor upstream of PCSK9, cell experiments revealed that knockdown of PCSK9 inhibited STAD cell stemness, whereas further addition of fatty acid inhibitors could attenuate the promoting effect on STAD cell stemness brought by STAD overexpression. Rescue experiments showed overexpressed PCSK9 exerted an inhibitory effect on the stemness of STAD cells brought by TEAD4 knockdown. The hypothesis that TEAD4/PCSK9 axis can promote STAD cell growth was confirmed by in vivo experiments. CONCLUSION: Transcription factor TEAD4 could activate PCSK9 to promote the stemness of STAD cells through FAM. These results added weight to the assumption that TEAD4/PCSK9 axis has the potential to be the therapeutic target that inhibits cancer stem cell in STAD.