Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(17): e2109969119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446620

RESUMO

Circadian pacemaker neurons in the Drosophila brain display daily rhythms in the levels of intracellular calcium. These calcium rhythms are driven by molecular clocks and are required for normal circadian behavior. To study their biological basis, we employed genetic manipulations in conjunction with improved methods of in vivo light-sheet microscopy to measure calcium dynamics in individual pacemaker neurons over complete 24-h durations at sampling frequencies as high as 5 Hz. This technological advance unexpectedly revealed cophasic daily rhythms in basal calcium levels and in high-frequency calcium fluctuations. Further, we found that the rhythms of basal calcium levels and of fast calcium fluctuations reflect the activities of two proteins that mediate distinct forms of calcium fluxes. One is the inositol trisphosphate receptor (ITPR), a channel that mediates calcium fluxes from internal endoplasmic reticulum calcium stores, and the other is a T-type voltage-gated calcium channel, which mediates extracellular calcium influx. These results suggest that Drosophila molecular clocks regulate ITPR and T-type channels to generate two distinct but coupled rhythms in basal calcium and in fast calcium fluctuations. We propose that both internal and external calcium fluxes are essential for circadian pacemaker neurons to provide rhythmic outputs and thereby, regulate the activities of downstream brain centers.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Biológicos/fisiologia , Cálcio , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Neurônios/fisiologia
2.
J Enzyme Inhib Med Chem ; 39(1): 2388209, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39140776

RESUMO

Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 µM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Metaloproteinase 9 da Matriz , Tiazóis , Triazóis , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Metaloproteinase 9 da Matriz/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Cisplatino/farmacologia , Cisplatino/química , Canais de Cálcio Tipo T/metabolismo
3.
Dev Biol ; 489: 84-97, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690104

RESUMO

The fluctuation of intracellular calcium concentration ([Ca2+]i) is known to be involved in various processes in the development of central nervous system, such as the proliferation of neural progenitor cells (NPCs), migration of intermediate progenitor cells (IPCs) from the ventricular zone (VZ) to the subventricular zone (SVZ), and migration of immature neurons from the SVZ to cortical plate. However, the roles of [Ca2+]i fluctuation in NPC development, especially in the differentiation of the self-renewing NPCs into neuron-generating NPCs and immature neurons have not been elucidated. Using calcium imaging of acute cortical slices and cells isolated from mouse embryonic cortex, we examined temporal changes in the pattern of [Ca2+]i fluctuations in VZ cells from E12 to E16. We observed intracellular Ca2+ levels in Pax6-positive self-renewing NPCs decreased with their neural differentiation. In E11, Pax6-positive NPCs and Tuj1-positive immature neurons exhibited characteristic [Ca2+]i fluctuations; few Pax6-positive NPCs exhibited [Ca2+]i transient, but many Tuj1-positive immature neurons did, suggesting that the change in pattern of [Ca2+]i fluctuation correlate to their differentiation. The [Ca2+]i fluctuation during NPCs development was mostly mediated by the T-type calcium channel and blockage of T-type calcium channel in neurosphere cultures increased the number of spheres and inhibited neuronal differentiation. Consistent with this finding, knockdown of Cav3.1 by RNAi in vivo maintained Pax6-positive cells as self-renewing NPCs, and simultaneously suppressing their neuronal differentiation of NPCs into Tbr1-positive immature neurons. These results reveal that [Ca2+]i fluctuation mediated by Cav3.1 is required for the neural differentiation of Pax6-positive self-renewing NPCs.


Assuntos
Canais de Cálcio Tipo T , Células-Tronco Neurais , Animais , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Neurônios/metabolismo
4.
Cytokine ; 161: 156079, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372008

RESUMO

The pro-inflammatory cytokine IL-6 has been associated with the progression of PCa to a castration-resistant phenotype. In this work, we characterized the biochemical changes evoked by IL-6 in three different models of PCa cells, including LNCaP, C4-2, and PC3. The effect of IL-6 on PCa cells was compared with the effect obtained by co-stimulation with the cAMP-inducing agent forskolin (FSK). Stimulation of LNCaP cells with IL-6 or IL-6 + FSK evoked increased expression of the neuroendocrine marker tubulin IIIß and Cav3.2 T-type Ca2+ channel subunit. PC3 cells, representing a more advanced state of PCa, had high levels of tubulin IIIß expression without any further changes observed by treatment with IL-6 or IL-6 + FSK. Elevated expression of the glucocorticoid receptor was observed in PC3, but not in LNCaP or C4-2 cells. Glucocorticoid receptor expression was not regulated by IL-6 stimulation of LNCaP or C4-2 cells. IL-6 acting alone or together with FSK evoked a significant reduction in the expression of the transcription factor REST and retinoblastoma tumor suppressor protein Rb1. In LNCaP cells, IL-6 acting alone or together with FSK had no effect on the expression of several biological markers of advanced PCa, including Aurora kinase A, valosin-containing protein, calcium-sensing receptor, calreticulin, S100A protein, and Protein S. In PC3 cells, co-treatment with IL-6 + FSK evoked increased expression of REST and S100A proteins, as well as a reduction in Protein S levels. These findings reveal a complex pattern of biochemical changes in PCa cells under the influence of IL-6.


Assuntos
Interleucina-6 , Neoplasias da Próstata , Humanos , Masculino , Interleucina-6/farmacologia , Linhagem Celular Tumoral , Receptores de Glucocorticoides , Tubulina (Proteína) , Neoplasias da Próstata/patologia
5.
Cell Biol Toxicol ; 39(3): 679-702, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34286406

RESUMO

Vincristine (VCR), an alkaloid isolated from vinca, is a commonly used chemotherapeutic drug. However, VCR therapy can lead to dose-dependent peripheral neurotoxicity, mainly manifesting as neuropathic pain, which is one of the dominant reasons for limiting its utility. Experimentally, we discovered that VCR-induced neuropathic pain (VINP) was accompanied by astrocyte activation; the upregulation of phospho-CaMKII (p-CaMKII), CaV3.2, and Connexin-43 (Cx43) expression; and the production and release of inflammatory cytokines and chemokines in the spinal cord. Similar situations were also observed in astrocyte cultures. Interestingly, these alterations were all reversed by intrathecal injection of KN-93 (a CaMKII inhibitor) or L-Ascorbic acid (a CaV3.2 inhibitor). In addition, KN-93 and L-Ascorbic acid inhibited the increase in [Ca2+]i associated with astrocyte activation. We also verified that knocking down or inhibiting Cx43 level via intrathecal injection of Cx43 siRNA or Gap27 (a Cx43 mimetic peptide) relieved pain hypersensitivity and reduced the release of inflammatory factors; however, they did not affect astrocyte activation or p-CaMKII and CaV3.2 expression. Besides, the overexpression of Cx43 through the transfection of the Cx43 plasmid did not affect p-CaMKII and CaV3.2 expressions in vitro. Therefore, CaMKII and CaV3.2 may activate astrocytes by increasing [Ca2+]i, thereby mediating Cx43-dependent inflammation in VINP. Moreover, we demonstrated that the CaMKII signalling pathway was involved in VCR-induced inflammation, apoptosis, and mitochondrial damage. Collectively, our findings show a novel mechanism by which CaMKII and CaV3.2 mediate Cx43-dependent inflammation by activating astrocytes in neuropathic pain induced by VCR.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Vincristina/farmacologia , Vincristina/metabolismo , Vincristina/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/uso terapêutico , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
6.
J Pharmacol Sci ; 152(2): 86-89, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169483

RESUMO

Cav3.2, a T-type calcium channel (T-channel) family member, is expressed in the nociceptors and spinal cord, and its activity is largely suppressed by zinc under physiological conditions. In rats, intrathecal and intraplantar administration of a zinc chelator, TPEN, caused T-channel-dependent mechanical hyperalgesia, and the intraplantar, but not intrathecal, TPEN induced Cav3.2 upregulation in the dorsal root ganglion. In mice, intraplantar TPEN also caused mechanical allodynia, which was abolished by T-channel inhibitors or Cav3.2 gene deletion. Together, spinal and peripheral zinc deficiency appears to enhance Cav3.2 activity in the spinal postsynaptic neurons and nociceptors, respectively, thereby promoting pain.


Assuntos
Canais de Cálcio Tipo T , Hiperalgesia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Roedores , Quelantes , Zinco , Canais de Cálcio Tipo T/genética , Gânglios Espinais
7.
Bioorg Chem ; 135: 106493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996509

RESUMO

Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.


Assuntos
Alcaloides , Antineoplásicos , Buxus , Canais de Cálcio Tipo T , Alcaloides/farmacologia , Analgésicos/farmacologia , Buxus/química
8.
Biol Pharm Bull ; 46(9): 1343-1346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661413

RESUMO

Cav3.2 channels belong to the T-type calcium channel (T-channel) family, i.e., low voltage-activated calcium channels, and are abundantly expressed in the nociceptors, playing a principal role in the development of pathological pain. The channel activity of Cav3.2 is suppressed by zinc under physiological conditions. We thus tested whether dietary zinc deficiency would cause Cav3.2-dependent nociceptive hypersensitivity in mice. In the mice fed with zinc deficient diet for 2 weeks, plasma zinc levels declined by more than half, and mechanical allodynia developed. The dietary zinc deficiency-induced allodynia was restored by T-channel inhibitors or by Cav3.2 gene silencing. These data demonstrate that zinc deficiency induces Cav3.2-dependent nociceptive hypersensitivity in mice, thereby suggesting that pain experienced by patients with diseases accompanied by zinc deficiency (e.g., chronic kidney disease) might involve the increased Cav3.2 activity.


Assuntos
Canais de Cálcio Tipo T , Hipersensibilidade , Desnutrição , Animais , Camundongos , Nociceptividade , Zinco , Hiperalgesia/etiologia , Dor
9.
J Reprod Dev ; 69(2): 87-94, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754390

RESUMO

Uterine peristalsis is essential for gamete transport and embryo implantation. It shares the characteristics of spontaneity, rhythmicity, and directivity with gastrointestinal peristalsis. Telocytes, the "interstitial Cajal-like cells" outside the digestive canal, are also located in the uterus and may act as pacemakers. To investigate the possible origin and regulatory mechanism of periodic uterine peristalsis in the human menstrual cycle, telocytes in the myometrium were studied to determine the effect of estradiol on T-type calcium channel regulation. In this study, biopsies of the human myometrium were obtained for cell culture, and double-labeling immunofluorescence screening was used to identify telocytes and T-type calcium channel expression. Intracellular calcium signal measurements and patch-clamp recordings were used to investigate the role of T-type calcium channels in regulating calcium currents with or without estradiol. Our study demonstrates that telocytes exist in the human uterus and express T-type calcium channels. The intracellular Ca2+ fluorescence intensity marked by Fluo-4AM was dramatically decreased by NNC 55-0396, a highly selective T-type calcium channel blocker, but enhanced by estradiol. T-type calcium current amplitude increased in telocytes incubated with estradiol in a dose-dependent manner compared to the control group. In conclusion, our study demonstrated that telocytes exist in the human myometrium, expressing T-type calcium channels and estradiol-enhanced T-type calcium currents, which may be a reasonable explanation for the origin of uterine peristalsis. The role of telocytes in the human uterus as pacemakers and message transfer stations in uterine peristalsis may be worth further investigation.


Assuntos
Canais de Cálcio Tipo T , Telócitos , Feminino , Humanos , Miométrio/metabolismo , Miométrio/patologia , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Cálcio/metabolismo , Telócitos/metabolismo , Telócitos/patologia
10.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240147

RESUMO

Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Sistemas do Segundo Mensageiro , Bloqueadores dos Canais de Cálcio/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Homeostase
11.
Mov Disord ; 37(6): 1193-1201, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257414

RESUMO

BACKGROUND: Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello-thalamo-cortical circuitry and may be dependent on T-type calcium channel activity. T-type calcium channels regulate sigma band electroencephalogram (EEG) power during non-rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX-944 is a novel T-type calcium channel blocker in development for essential tremor. OBJECTIVES: Using a rat tremor model and sigma-band EEG power, we assessed pharmacodynamically-active doses of PRAX-944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials. METHODS: Harmaline-induced tremor and spontaneous locomotor activity were used to assess PRAX-944 efficacy and tolerability, respectively, in rats. Sigma-power was used as a translational biomarker of T-type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants. RESULTS: In rats, PRAX-944 dose-dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma-power by ~30% to 50% in rats. In healthy participants, sigma-power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated. CONCLUSIONS: In rats, PRAX-944 reduced sigma-power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma-power indicate that robust T-type calcium channel blockade was achieved at well-tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Tremor Essencial , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/efeitos dos fármacos , Desenvolvimento de Medicamentos , Tremor Essencial/tratamento farmacológico , Ratos
12.
Clin Exp Pharmacol Physiol ; 49(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438468

RESUMO

Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa,L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa,L and ICa,T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa,L and ICa,T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.


Assuntos
Remodelamento Atrial , Canais de Cálcio/fisiologia , Conexina 43/fisiologia , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Western Blotting , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Linhagem Celular , Células Cultivadas , Conexina 43/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Humanos , Mibefradil/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp
13.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077291

RESUMO

The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.


Assuntos
Canais de Cálcio Tipo T , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Humanos , Mibefradil/farmacologia
14.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056729

RESUMO

The cannabinoid receptors (CB1/CB2) and the T-type calcium channels are involved in disorders associated with both physiological pain and depressive behaviors. Valuable pharmacological species carbazole derivatives such as the NMP-4, NMP-7, and NMP-181 (Neuro Molecular Production) regulate both biological entities. In this work, DFT calculations were performed to characterize theoretically their structural and chemical reactivity properties using the BP86/cc-pVTZ level of theory. The molecular orbital contributions and the chemical reactivity analysis reveal that a major participation of the carbazole group is in the donor-acceptor interactions of the NMP compounds. The DFT analysis on the NMP compounds provides insights into the relevant functional groups involved during the ligand-receptor interactions. Molecular docking analysis is used to reveal possible sites of interaction of the NMP compounds with the Cav3.2 calcium channel. The interaction energy values and reported experimental evidence indicate that the site denominated as "Pore-blocking", which is formed mainly by hydrophobic residues and the T586 residue, is a probable binding site for the NMP compounds.


Assuntos
Simulação de Acoplamento Molecular
15.
Am J Physiol Cell Physiol ; 321(6): C964-C977, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586897

RESUMO

Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Células Endoteliais/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Neovascularização Fisiológica , Inibidores da Angiogênese/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Masculino , Microvasos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley
16.
Pflugers Arch ; 473(10): 1631-1639, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392423

RESUMO

Retinoblastoma is the most common malignant intraocular tumor in children. Y79 human retinoblastoma cells are in vitro models of retinal tumors used for drug screening. Undifferentiated Y79 cells originate from a primitive multi-potential neuroectodermal cell and express neuronal and glial properties. However, the nature of cellular heterogeneity in Y79 cells is unclear because functional methods to characterize neurons or glial cells have not been employed to Y79 cells. Here, we perform patch-clamp recordings to characterize electrophysiological properties in retinoblastoma cells. We identified a population of large-sized Y79 cells (i.e., giant cells, ~ 40-µm diameter), hyperpolarized resting membrane potential (-54 mV), and low input resistance (~ 600 MΩ), indicating electrically mature cells. We also found that giant Y79 cells contain increased density of T-type calcium channels. Finally, we found that T-type calcium channels are active only in giant cells suggesting that cancer treatments aimed to prevent calcium influx in retinoblastomas should be tested in giant cells.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Células Gigantes/metabolismo , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Retina/genética , Retinoblastoma/genética
17.
Mov Disord ; 36(8): 1944-1949, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764619

RESUMO

BACKGROUND: Available essential tremor (ET) therapies have limitations. OBJECTIVES: The objective of this study was to evaluate CX-8998, a selective T-type calcium channel modulator, in essential tremor. METHODS: Patients 18-75 years old with moderate to severe essential tremor were randomized 1:1 to receive CX-8998 (titrated to 10 mg twice daily) or placebo. The primary end point was change from baseline to day 28 in The Essential Tremor Rating Assessment Scale performance subscale scored by independent blinded video raters. Secondary outcomes included in-person blinded investigator rating of The Essential Tremor Rating Assessment Scale performance subscale, The Essential Tremor Rating Assessment Scale activities of daily living subscale, and Kinesia ONE accelerometry. RESULTS: The video-rated The Essential Tremor Rating Assessment Scale performance subscale was not different for CX-8998 (n = 39) versus placebo (n = 44; P = 0.696). CX-8998 improved investigator-rated The Essential Tremor Rating Assessment Scale performance subscale (P = 0.017) and The Essential Tremor Rating Assessment Scale activities of daily living (P = 0.049) but not Kinesia ONE (P = 0.421). Adverse events with CX-8998 included dizziness (21%), headache (8%), euphoric mood (6%), and insomnia (6%). CONCLUSIONS: The primary efficacy end point was not met; however, CX-8998 improved some assessments of essential tremor, supporting further clinical investigation. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Tremor Essencial , Atividades Cotidianas , Método Duplo-Cego , Tremor Essencial/tratamento farmacológico , Humanos , Resultado do Tratamento
18.
Am J Med Genet A ; 185(1): 256-260, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098379

RESUMO

Early-onset severe spinocerebellar ataxia 42 with neurodevelopmental deficits (SCA42ND, MIM#604065) is an ultrarare autosomal dominant syndrome related to de novo CACNA1G gain-of-function pathogenic variants. All patients with SCA42ND show cerebellar atrophy and/or hypoplasia on neuroimaging and share common features such as dysmorphic features, global developmental delay, and axial hypotonia, all manifesting within the first year of life. To date, only 10 patients with SCA42ND have been reported with functionally confirmed gain-of-function variants, bearing either of two recurrent pathogenic variants. We describe a girl with congenital ataxia, without epilepsy, and a de novo p.Ala961Thr pathogenic variant in CACNA1G. We review the published subjects with the aim of better characterizing the dysmorphic features that may be crucial for clinical recognition of SCA42ND. Cerebellar atrophy, together with digital anomalies, particularly broad thumbs and/or halluces, should lead to clinical suspicion of this disease. We describe the first pharmacological attempt to treat a patient with SCA42ND using zonisamide, an antiepileptic drug with T-type channel blocker activity, in an off-label indication using an itemized study protocol. No efficacy was observed at the dose tested. However, without pharmacological treatment, she showed a positive evolution in neurodevelopment during the follow-up.


Assuntos
Canais de Cálcio Tipo T/genética , Epilepsia/genética , Hipotonia Muscular/genética , Ataxias Espinocerebelares/genética , Idade de Início , Alelos , Pré-Escolar , Epilepsia/complicações , Epilepsia/diagnóstico por imagem , Epilepsia/tratamento farmacológico , Feminino , Mutação com Ganho de Função/genética , Humanos , Lactente , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/tratamento farmacológico , Mutação , Linhagem , Fenótipo , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/tratamento farmacológico , Zonisamida/administração & dosagem
19.
Biol Pharm Bull ; 44(3): 461-464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642557

RESUMO

T-Type Ca2+ channels (T-channels), particularly Cav3.2, are now considered as therapeutic targets for treatment of intractable pain including visceral pain. Among existing medicines, bepridil, a multi-channel blocker, used for treatment of arrhythmia and angina, and pimozide, a dopamine D2 receptor antagonist, known as a typical antipsychotic, have potent T-channel blocking activity. We thus tested whether bepridil and pimozide could suppress visceral pain in mice. Colonic and bladder pain were induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and systemic administration of cyclophosphamide (CPA), respectively. Referred hyperalgesia was assessed by von Frey test, and colonic hypersensitivity to distension by a volume load with intracolonic water injection and spontaneous bladder pain were evaluated by observing nociceptive behaviors in conscious mice. The mice exhibited referred hyperalgesia and colonic hypersensitivity to distension on day 6 after TNBS treatment. Systemic administration of bepridil at 10-20 mg/kg or pimozide at 0.1-0.5 mg/kg strongly reduced the referred hyperalgesia on the TNBS-induced referred hyperalgesia and colonic hypersensitivity to distension. CPA treatment caused bladder pain-like nociceptive behavior and referred hyperalgesia, which were reversed by bepridil at 10-20 mg/kg or pimozide at 0.5-1 mg/kg. Our data thus suggest that bepridil and pimozide, existing medicines capable of blocking T-channels, are useful for treatment of colonic and bladder pain, and serve as seeds for the development of new medicines for visceral pain treatment.


Assuntos
Analgésicos/uso terapêutico , Bepridil/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Colite/tratamento farmacológico , Cistite/tratamento farmacológico , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Pimozida/uso terapêutico , Dor Visceral/tratamento farmacológico , Animais , Canais de Cálcio Tipo T , Colite/induzido quimicamente , Ciclofosfamida , Cistite/induzido quimicamente , Feminino , Masculino , Camundongos , Ácido Trinitrobenzenossulfônico , Dor Visceral/induzido quimicamente
20.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451040

RESUMO

Alzheimer's disease (AD), characterized by cognitive impairments, is considered to be one of the most widespread chronic neurodegenerative diseases worldwide. We recently introduced a novel therapeutic agent for AD treatment, the T-type calcium channel enhancer ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)-2H-spiro[cyclopentane-1,3-imidazo[1,2-a]pyridin]-2-ene-3-carboxylate (SAK3). SAK3 enhances calcium/calmodulin-dependent protein kinase II and proteasome activity, thereby promoting amyloid beta degradation in mice with AD. However, the antioxidative effects of SAK3 remain unclear. We investigated the antioxidative effects of SAK3 in olfactory bulbectomized mice (OBX mice), compared with the effects of donepezil as a positive control. As previously reported, single oral administration of both SAK3 (0.5 mg/kg, p.o.) and donepezil (1.0 mg/kg, p.o.) significantly improved cognitive and depressive behaviors in OBX mice. Single oral SAK3 administration markedly reduced 4-hydroxy-2-nonenal and nitrotyrosine protein levels in the hippocampus of OBX mice, which persisted until 1 week after administration. These effects are similar to those observed with donepezil therapy. Increased protein levels of oxidative stress markers were observed in the microglial cells, which were significantly rescued by SAK3 and donepezil. SAK3 could ameliorate oxidative stress in OBX mice, like donepezil, suggesting that the antioxidative effects of SAK3 and donepezil are among the neuroprotective mechanisms in AD pathogenesis.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Cognição/efeitos dos fármacos , Imidazóis/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos de Espiro/farmacologia , Administração Oral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Agonistas dos Canais de Cálcio/administração & dosagem , Agonistas dos Canais de Cálcio/química , Modelos Animais de Doenças , Esquema de Medicação , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Estrutura Molecular , Bulbo Olfatório/cirurgia , Memória Espacial/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA