Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 636-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37975530

RESUMO

Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.


Assuntos
Sistemas de Secreção Bacterianos , Tomografia com Microscopia Eletrônica , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/metabolismo
2.
Mol Syst Biol ; 20(6): 702-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658795

RESUMO

The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Sistemas de Secreção Tipo VI , Biologia Computacional/métodos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/genética , Genoma Bacteriano , Anotação de Sequência Molecular
3.
Annu Rev Microbiol ; 74: 497-520, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680451

RESUMO

All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.


Assuntos
Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Transferência Genética Horizontal , Interações Microbianas , Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia
4.
J Bacteriol ; 206(6): e0027323, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717111

RESUMO

Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE: The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.


Assuntos
Proteínas de Bactérias , Desoxirribonucleases , Pseudomonas syringae , Sistemas de Secreção Tipo VI , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Pseudomonas syringae/enzimologia , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Desoxirribonucleases/metabolismo , Desoxirribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos
5.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376387

RESUMO

The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.


Assuntos
Colicinas , Shigella sonnei , Animais , Shigella sonnei/genética , Escherichia coli/genética , Bactérias , Conteúdo Gastrointestinal , Mamíferos
6.
Arch Microbiol ; 206(7): 321, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907796

RESUMO

Vibrio parahaemolyticus possesses two distinct type VI secretion systems (T6SS), namely T6SS1 and T6SS2. T6SS1 is predominantly responsible for adhesion to Caco-2 and HeLa cells and for the antibacterial activity of V. parahaemolyticus, while T6SS2 mainly contributes to HeLa cell adhesion. However, it remains unclear whether the T6SS systems have other physiological roles in V. parahaemolyticus. In this study, we demonstrated that the deletion of icmF2, a structural gene of T6SS2, reduced the biofilm formation capacity of V. parahaemolyticus under low salt conditions, which was also influenced by the incubation time. Nonetheless, the deletion of icmF2 did not affect the biofilm formation capacity in marine-like growth conditions, nor did it impact the flagella-driven swimming and swarming motility of V. parahaemolyticus. IcmF2 was found to promote the production of the main components of the biofilm matrix, including extracellular DNA (eDNA) and extracellular proteins, and cyclic di-GMP (c-di-GMP) in V. parahaemolyticus. Additionally, IcmF2 positively influenced the transcription of cpsA, mfpA, and several genes involved in c-di-GMP metabolism, including scrJ, scrL, vopY, tpdA, gefA, and scrG. Conversely, the transcription of scrA was negatively impacted by IcmF2. Therefore, IcmF2-dependent biofilm formation was mediated through its effects on the production of eDNA, extracellular proteins, and c-di-GMP, as well as its impact on the transcription of cpsA, mfpA, and genes associated with c-di-GMP metabolism. This study confirmed new physiological roles for IcmF2 in promoting biofilm formation and c-di-GMP production in V. parahaemolyticus.


Assuntos
Proteínas de Bactérias , Biofilmes , GMP Cíclico , Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/metabolismo , Biofilmes/crescimento & desenvolvimento , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Humanos , Regulação Bacteriana da Expressão Gênica , Células HeLa
7.
EMBO Rep ; 23(1): e53981, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34752000

RESUMO

Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Cargo effectors are secreted by binding noncovalently to the T6SS apparatus. Occasionally, effector secretion is assisted by an adaptor protein, although the adaptor itself is not secreted. Here, we report a new T6SS secretion mechanism, in which an effector and a co-effector are secreted together. Specifically, we identify a novel periplasm-targeting effector that is secreted together with its co-effector, which contains a MIX (marker for type sIX effector) domain previously reported only in polymorphic toxins. The effector and co-effector directly interact, and they are dependent on each other for secretion. We term this new secretion mechanism "a binary effector module," and we show that it is widely distributed in marine bacteria.


Assuntos
Sistemas de Secreção Tipo VI , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588306

RESUMO

The type VI secretion system (T6SS) is a powerful tool deployed by Gram-negative bacteria to antagonize neighboring organisms. Here, we report that Acinetobacter baumannii ATCC 17978 (Ab17978) secretes D-lysine (D-Lys), increasing the extracellular pH and enhancing the peptidoglycanase activity of the T6SS effector Tse4. This synergistic effect of D-Lys on Tse4 activity enables Ab17978 to outcompete Gram-negative bacterial competitors, demonstrating that bacteria can modify their microenvironment to increase their fitness during bacterial warfare. Remarkably, this lethal combination also results in T6SS-mediated killing of Gram-positive bacteria. Further characterization revealed that Tse4 is a bifunctional enzyme consisting of both lytic transglycosylase and endopeptidase activities, thus representing a family of modularly organized T6SS peptidoglycan-degrading effectors with an unprecedented impact in antagonistic bacterial interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Transporte Biológico/fisiologia
9.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443205

RESUMO

The type 6 secretion system (T6SS) is a dynamic organelle encoded by many gram-negative bacteria that can be used to kill competing bacterial prey species in densely occupied niches. Some predatory species, such as Vibrio cholerae, use their T6SS in an untargeted fashion while in contrast, Pseudomonas aeruginosa assembles and fires its T6SS apparatus only after detecting initial attacks by other bacterial prey cells; this targeted attack strategy has been termed the T6SS tit-for-tat response. Molecules that interact with the P. aeruginosa outer membrane such as polymyxin B can also trigger assembly of T6SS organelles via a signal transduction pathway that involves protein phosphorylation. Recent work suggests that a phospholipase T6SS effector (TseL) of V. cholerae can induce T6SS dynamic activity in P. aeruginosa when delivered to or expressed in the periplasmic space of this organism. Here, we report that inhibiting expression of essential genes involved in outer membrane biogenesis can also trigger T6SS activation in P. aeruginosa Specifically, we developed a CRISPR interference (CRISPRi) system to knock down expression of bamA, tolB, and lptD and found that these knockdowns activated T6SS activity. This increase in T6SS activity was dependent on the same signal transduction pathway that was previously shown to be required for the tit-for-tat response. We conclude that outer membrane perturbation can be sensed by P. aeruginosa to activate the T6SS even when the disruption is generated by aberrant cell envelope biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Genes Essenciais/fisiologia , Proteínas Periplásmicas/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/genética , Membrana Celular/patologia , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes Essenciais/genética , Genótipo , Proteínas Periplásmicas/genética , Fenótipo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , RNA-Seq , Transdução de Sinais/genética , Estresse Fisiológico , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34625471

RESUMO

Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.


Assuntos
Imunidade Inata , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo VI , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transporte Proteico , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000482

RESUMO

Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides' coordinated survival in the natural environment and the mechanisms that infect the host.


Assuntos
Proteínas de Bactérias , Flagelos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Plesiomonas , Flagelos/metabolismo , Flagelos/genética , Plesiomonas/genética , Plesiomonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcriptoma , Regiões Promotoras Genéticas , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Transcrição Gênica , Humanos
12.
J Bacteriol ; 205(9): e0014023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676009

RESUMO

Although ribosomes are generally examined in aggregate, ribosomes can be heterogenous in composition. Evidence is accumulating that changes in ribosome composition may result in altered function, such that ribosome heterogeneity may provide a mechanism to regulate protein synthesis. Ribosome heterogeneity in the human pathogen Francisella tularensis results from incorporation of one of three homologs of bS21, a small ribosomal subunit protein demonstrated to regulate protein synthesis in other bacteria. Loss of one homolog, bS21-2, results in genome-wide post-transcriptional changes in protein abundance. This suggests that bS21-2 can, either directly or indirectly, lead to preferential translation of particular mRNAs. Here, we examine the potential of bS21-2 to function in a leader sequence-dependent manner and to function indirectly, via Hfq. We found that the 5´ untranslated region (UTR) of some bS21-2-responsive genes, including key virulence genes, is sufficient to alter translation in cells lacking bS21-2. We further identify features of a 5´ UTR that allow responsiveness to bS21-2. These include an imperfect Shine-Dalgarno sequence and a particular six nucleotide sequence. Our results are consistent with a model in which a bS21 homolog increases the efficiency of translation initiation through interactions with specific leader sequences. With respect to bS21-2 indirectly regulating translation via the RNA-binding protein Hfq, we found that Hfq controls transcript abundance rather than protein synthesis, impacting virulence gene expression via a distinct mechanism. Together, we determined that ribosome composition in F. tularensis regulates translation in a leader sequence-dependent manner, a regulatory mechanism which may be used in other bacteria. IMPORTANCE Ribosome heterogeneity is common in bacteria, and there is mounting evidence that ribosome composition plays a regulatory role in protein synthesis. However, mechanisms of ribosome-driven gene regulation are not well understood. In the human pathogen Francisella tularensis, which encodes multiple homologs for the ribosomal protein bS21, loss of one homolog impacts protein synthesis and virulence. Here, we explore the mechanism behind bS21-mediated changes in protein synthesis, finding that they can be linked to altered translation initiation and are dependent on specific sequences in the leaders of transcripts. Our data support a model in which ribosome composition regulates gene expression through translation, a strategy that may be conserved in diverse organisms with various sources of ribosome heterogeneity.


Assuntos
Francisella tularensis , Humanos , Francisella tularensis/genética , Ribossomos/genética , Proteínas Ribossômicas/genética , Regiões 5' não Traduzidas , RNA Mensageiro/genética
13.
J Bacteriol ; 205(2): e0035622, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36655996

RESUMO

Widely employed by Gram-negative pathogens for competition and pathogenesis, the type six protein secretion system (T6SS) can inject toxic effectors into neighboring cells through the penetration of a spear-like structure comprising a long Hcp tube and a VgrG-PAAR spike complex. The cone-shaped PAAR is believed to sharpen the T6SS spear for penetration but it remains unclear why PAAR is required for T6SS functions in some bacteria but dispensable in others. Here, we report the conditional requirement of PAAR for T6SS functions in Aeromonas dhakensis, an emerging human pathogen that may cause severe bacteremia. By deleting the two PAAR paralogs, we show that PAAR is not required for T6SS secretion, bacterial killing, or specific effector delivery in A. dhakensis. By constructing combinatorial PAAR and vgrG deletions, we demonstrate that deletion of individual PAAR moderately reduced T6SS functions but double or triple deletions of PAAR in the vgrG deletion mutants severely impaired T6SS functions. Notably, the auxiliary-cluster-encoded PAAR2 and VgrG3 are less critical than the main-cluster-encoded PAAR1 and VgrG1&2 proteins to T6SS functions. In addition, PAAR1 but not PAAR2 contributes to antieukaryotic virulence in amoeba. Our data suggest that, for a multi-PAAR T6SS, the variable role of PAAR paralogs correlates with the VgrG-spike composition that collectively dictates T6SS assembly. IMPORTANCE Gram-negative bacteria often encode multiple paralogs of the cone-shaped PAAR that sits atop the VgrG-spike and is thought to sharpen the spear-like T6SS puncturing device. However, it is unclear why PAAR is required for the assembly of some but not all T6SSs and why there are multiple PAARs if they are not required. Our data delineate a VgrG-mediated conditional requirement for PAAR and suggest a core-auxiliary relationship among different PAAR-VgrG modules that may have been acquired sequentially by the T6SS during evolution.


Assuntos
Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Virulência
14.
Funct Integr Genomics ; 23(3): 245, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460717

RESUMO

Enterobacter species are considered to be an opportunistic human pathogen owing to the existence of antibiotic-resistant strains and drug resides; however, the detailed analysis of the antibiotic resistance and virulence features in environmental isolates is poorly characterized. Here, in the study, we characterized the biochemical characteristics, and genome, pan-genome, and comparative genome analyses of an environmental isolate Enterobacter sp. S-16. The strain was identified as Enterobacter spp. by using 16S rRNA gene sequencing. To unravel genomic features, whole genome of Enterobacter sp. S-16 was sequenced using a hybrid assembly approach and genome assembly was performed using the Unicycler tool. The assembled genome contained the single conting size 5.3 Mbp, GC content 55.43%, and 4500 protein-coding genes. The genome analysis revealed the various gene clusters associated with virulence, antibiotic resistance, type VI secretion system (T6SS), and many stress tolerant genes, which may provide important insight for adapting to changing environment conditions. Moreover, different metabolic pathways were identified that potentially contribute to environmental survival. Various hydrolytic enzymes and motility functions equipped the strain S-16 as an active colonizer. The genome analysis confirms the presence of carbohydrate-active enzymes (CAZymes), and non-enzymatic carbohydrate-binding modules (CBMs) involved in the hydrolysis of complex carbohydrate polymers. Moreover, the pan-genome analysis provides detailed information about the core genes and shared genes with the closest related Enterobacter species. The present study is the first report showing the presence of YdhE/NorM in Enterobacter spp. Thus, the elucidation of genome sequencing will increase our understanding of the pathogenic nature of environmental isolate, supporting the One Health Concept.


Assuntos
Enterobacter , Genoma Bacteriano , Humanos , Enterobacter/genética , RNA Ribossômico 16S , Genômica , Carboidratos , Filogenia
15.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490402

RESUMO

The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/genética , Bactérias/genética , Sistemas de Secreção Tipo VI/genética , Bactérias Gram-Negativas/genética , Eucariotos
16.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552221

RESUMO

Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Percepção de Quorum/genética
17.
Arch Microbiol ; 205(5): 207, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101014

RESUMO

The type VI secretion system (T6SS) is important for interbacterial competition and virulence in Vibrio species. It is generally agreed that T6SS provides a fitness advantage to Vibrios. Some Vibrio species possess one, while others possess two T6SSs. Even within the same Vibrio species, different strains can harbor a variable number of T6SSs. Such is the case in V. fluvialis, an opportunistic human pathogen, that some V. fluvialis strains do not harbor T6SS1. This study found that Amphritea, Marinomonas, Marinobacterium, Vibrio, Photobacterium, and Oceanospirillum species have genes encoding V. fluvialis T6SS1 homologs. The cladogram of T6SS1 genes suggested that these genes appeared to be horizontally acquired by V. fluvialis, V. furnissii, and some other Vibrio species, when compared with the species tree. Codon insertions, codon deletions, nonsense mutations, and the insertion sequence are found in many genes, such as clpV1, tssL1, and tssF1, which encode structure components of T6SS1 in V. furnissii and V. fluvialis. Codon deletion events are more common than codon insertion, insertion sequence disruption, and nonsense mutation events in genes that encode components of T6SS1. Similarly, codon insertions and codon deletions are found in genes relevant to T6SS2, including tssM2, vgrG2 and vasH, in V. furnissii and V. fluvialis. These mutations are likely to disable the functions of T6SSs. Our findings indicate that T6SS may have a fitness disadvantage in V. furnissii and V. fluvialis, and the loss of function in T6SS may help these Vibrio species to survive under certain conditions.


Assuntos
Elementos de DNA Transponíveis , Vibrio , Humanos , Vibrio/genética , Genômica , Mutação
18.
Int Microbiol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044418

RESUMO

Enterobacter species represent widely distributed opportunistic pathogens, commonly associated with plants and humans. In the present study, we performed a detailed molecular characterization as well as genomic study of a type VI secretion system (T6SS) bacterium belonging to member of the family Enterobacteriaceae and named Enterobacter sp. S-33. The comparative sequence analysis of the 16S rRNA gene showed that the strain was closely related to other Enterobacter species. The complete genome of the strain with a genome size of 4.6 Mbp and GC-content of 55.63% was obtained through high-quality sequencing. The genomic analysis with online tools unravelled the various genes belonging to the bacterial secretion system, antibiotic resistance, virulence, efflux pumps, etc. The isolate showed the motility behavior that contributes to Enterobacter persistence in a stressed environment and further supports infections. PCR amplification and further sequencing confirmed the presence of drug-efflux genes acrA, acrB, and outer membrane genes, viz. OmpA, OmpC, and OmpF. The cell surface hydrophobicity and co-aggregation assay against different bacterial strains illustrated its putative pathogenic nature. Genome mining identified various biosynthetic gene clusters (BGCs) corresponding to non-ribosomal proteins (NRPS), siderophore, and arylpolyene production. Briefly, genome sequencing and detailed characterization of environmental Enterobacter isolate will assist in understanding the epidemiology of Enterobacter species, and the further prevention and treatment of infectious diseases caused by these broad-host range species.

19.
Biotechnol Lett ; 45(3): 309-331, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683130

RESUMO

Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Fatores de Virulência/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(27): 15923-15934, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571920

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease in the tropics and subtropics with high morbidity and mortality. The facultative intracellular bacterium induces host cell fusion through its type VI secretion system 5 (T6SS5) as an important part of its pathogenesis in mammalian hosts. This allows it to spread intercellularly without encountering extracellular host defenses. We report that bacterial T6SS5-dependent cell fusion triggers type I IFN gene expression in the host and leads to activation of the cGAMP synthase-stimulator of IFN genes (cGAS-STING) pathway, independent of bacterial ligands. Aberrant and abortive mitotic events result in the formation of micronuclei colocalizing with cGAS, which is activated by double-stranded DNA. Surprisingly, cGAS-STING activation leads to type I IFN transcription but not its production. Instead, the activation of cGAS and STING results in autophagic cell death. We also observed type I IFN gene expression, micronuclei formation, and death of chemically induced cell fusions. Therefore, we propose that the cGAS-STING pathway senses unnatural cell fusion through micronuclei formation as a danger signal, and consequently limits aberrant cell division and potential cellular transformation through autophagic death induction.


Assuntos
Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Burkholderia pseudomallei/metabolismo , Fusão Celular , Dano ao DNA , Regulação da Expressão Gênica , Instabilidade Genômica , Células Hep G2 , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Nucleotidiltransferases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA