Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 706: 149767, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484570

RESUMO

Microglial activation is a critical factor in the pathogenesis and progression of neuroinflammatory diseases. Mild hypothermia, known for its neuroprotective properties, has been shown to alleviate microglial activation. In this study, we explore the differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) in BV-2 microglial cells under different conditions: normal temperature (CN), mild hypothermia (YT), normal temperature with lipopolysaccharide (LPS), and mild hypothermia with LPS (LPS + YT). Venn analysis revealed 119 DE mRNAs that were down-regulated in the LPS + YT vs LPS comparison but up-regulated in the CN vs LPS comparison, primarily enriched in Gene Ontology terms related to immune and inflammatory responses. Furthermore, through Venn analysis of YT vs CN and LPS + YT vs LPS comparisons, we identified 178 DE mRNAs and 432 DE lncRNAs. Among these transcripts, we validated the expression of Tent5c at the protein and mRNA levels. Additionally, siRNA-knockdown of Tent5c attenuated the expression of pro-inflammatory genes (TNF-α, IL-1ß, Agrn, and Fpr2), cellular morphological changes, NLRP3 and p-P65 protein levels, immunofluorescence staining of p-P65 and number of cells with ASC-speck induced by LPS. Furthermore, Tent5c overexpression further potentiated the aforementioned indicators in the context of mild hypothermia with LPS treatment. Collectively, our findings highlight the significant role of Tent5c down-regulation in mediating the anti-inflammatory effects of mild hypothermia.


Assuntos
Hipotermia , RNA Longo não Codificante , Humanos , Lipopolissacarídeos/farmacologia , Regulação para Baixo , Microglia/metabolismo , Hipotermia/metabolismo , RNA Longo não Codificante/metabolismo
2.
J Gastrointest Oncol ; 15(4): 1870-1879, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279976

RESUMO

On a global scale, gastric adenocarcinoma (GCa) accounts for a large burden of death from cancer. Despite advances in systemic therapy and surgical technique, the fatality rate for GCa remains unacceptably high in Europe and North America, where diagnosis is typically made at an advanced stage. Biomarkers that can accurately predict response to new therapies and provide novel therapeutic strategies are urgently sought. FAM46C, a putative noncanonical nucleotidyltransferase, has garnered interest for its tumor suppressor function in multiple myeloma. A frequent and profound depletion of FAM46C has been described in GCa patients from China, Japan and now Canada. Furthermore, the degree of FAM46C depletion meaningfully portends cancer recurrence following resection, and death from GCa. In this review, we provide an updated summary of the literature regarding FAM46C as a biomarker in GCa and explore the potential mechanism(s) through which FAM46C depletion promotes GCa progression, including dis-inhibition of oncogenic Plk4 kinase activity. We highlight the potential for restoration of FAM46C levels as a therapeutic strategy. Norcantharidin, a synthetic analogue of the traditional Chinese medicine cantharidin derived from the blister beetle, is the only bio-available compound presently known to upregulate FAM46C expression and is under investigation in phase one trials in cancer patients.

3.
Cancers (Basel) ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730656

RESUMO

FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, ß-catenin and TGF-ß/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.

4.
J Genet Genomics ; 51(6): 594-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403115

RESUMO

The post-transcriptional regulation of mRNA is a crucial component of gene expression. The disruption of this process has detrimental effects on the normal development and gives rise to various diseases. Searching for novel post-transcriptional regulators and exploring their roles are essential for understanding development and disease. Through a multimodal analysis of red blood cell trait genome-wide association studies (GWAS) and transcriptomes of erythropoiesis, we identify FAM46C, a non-canonical RNA poly(A) polymerase, as a necessary factor for proper red blood cell development. FAM46C is highly expressed in the late stages of the erythroid lineage, and its developmental upregulation is controlled by an erythroid-specific enhancer. We demonstrate that FAM46C stabilizes mRNA and regulates erythroid differentiation in a polymerase activity-dependent manner. Furthermore, we identify transcripts of lysosome and mitochondria components as highly confident in vivo targets of FAM46C, which aligns with the need of maturing red blood cells for substantial clearance of organelles and maintenance of cellular redox homeostasis. In conclusion, our study unveils a unique role of FAM46C in positively regulating lysosome and mitochondria components, thereby promoting erythropoiesis.


Assuntos
Eritropoese , Polinucleotídeo Adenililtransferase , Eritropoese/genética , Humanos , Animais , Camundongos , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estudo de Associação Genômica Ampla , Mitocôndrias/genética , Mitocôndrias/metabolismo , Diferenciação Celular/genética , Lisossomos/metabolismo , Lisossomos/genética , Eritrócitos/metabolismo , Transcriptoma/genética
5.
Microbiol Spectr ; 11(4): e0521122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358411

RESUMO

FAM46C is a multiple myeloma (MM) tumor suppressor whose function is only starting to be elucidated. We recently showed that in MM cells FAM46C triggers apoptosis by inhibiting autophagy and altering intracellular trafficking and protein secretion. To date, both a physiological characterization of FAM46C role and an assessment of FAM46C-induced phenotypes outside of MM are lacking. Preliminary reports suggested an involvement of FAM46C with regulation of viral replication, but this was never confirmed. Here, we show that FAM46C is an interferon-stimulated gene and that the expression of wild-type FAM46C in HEK-293T cells, but not of its most frequently found mutant variants, inhibits the production of both HIV-1-derived and HIV-1 lentiviruses. We demonstrate that this effect does not require transcriptional regulation and does not depend on inhibition of either global or virus-specific translation but rather mostly relies on FAM46C-induced deregulation of autophagy, a pathway that we show to be required for efficient lentiviral particle production. These studies not only provide new insights on the physiological role of the FAM46C protein but also could help in implementing more efficient antiviral strategies on one side and lentiviral particle production approaches on the other. IMPORTANCE FAM46C role has been thoroughly investigated in MM, but studies characterizing its role outside of the tumoral environment are still lacking. Despite the success of antiretroviral therapy in suppressing HIV load to undetectable levels, there is currently no HIV cure, and treatment is lifelong. Indeed, HIV continues to be a major global public health issue. Here, we show that FAM46C expression in HEK-293T cells inhibits the production of both HIV and HIV-derived lentiviruses. We also demonstrate that such inhibitory effect relies, at least in part, on the well-established regulatory role that FAM46C exerts on autophagy. Deciphering the molecular mechanism underlying this regulation will not only facilitate the understanding of FAM46C physiological role but also give new insights on the interplay between HIV and the cellular environment.


Assuntos
Interferons , Proteínas , Interferons/genética , Proteínas/genética , Regulação da Expressão Gênica , Apoptose , Autofagia
6.
FEBS J ; 289(15): 4383-4397, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34117720

RESUMO

Multiple myeloma (MM) is a malignancy of plasma cells (PC) that grow within the bone marrow and maintain massive immunoglobulin (Ig) production. Disease evolution is driven by genetic lesions, whose effects on cell biology and fitness underlie addictions and vulnerabilities of myeloma cells. Several genes mutated in myeloma are strictly involved in dictating PC identity and antibody factory function. Here, we evaluate the impact of mutations in IRF4, PRDM1, and XBP1, essential transcription factors driving the B to PC differentiation, on MM cell biology and homeostasis. These factors are highly specialized, with limited overlap in their downstream transcriptional programs. Indeed, IRF4 sustains metabolism, survival, and proliferation, while PRDM1 and XBP1 are mainly responsible for endoplasmic reticulum expansion and sustained Ig secretion. Interestingly, IRF4 undergoes activating mutations and translocations, while PRDM1 and XBP1 are hit by loss-of-function events, raising the hypothesis that containment of the secretory program, but not its complete extinction, may be beneficial to malignant PCs. Finally, recent studies unveiled that also the PRDM1 target, FAM46C/TENT5C, an onco-suppressor uniquely and frequently mutated or deleted in myeloma, is directly and potently involved in orchestrating ER homeostasis and secretory activity. Inactivating mutations found in this gene and its interactors strengthen the notion that reduced secretory capacity confers advantage to myeloma cells. We believe that dissection of the evolutionary pressure on genes driving PC-specific functions in myeloma will disclose the cellular strategies by which myeloma cells maintain an equilibrium between antibody production and survival, thus unveiling novel therapeutic targets.


Assuntos
Mieloma Múltiplo , Plasmócitos , Carcinogênese/genética , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Oncogenes , Plasmócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA