Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39037546

RESUMO

Prolactin is a polypeptide hormone composed of 199 amino acids, synthesized by lactotroph cells. Its primary effects are on the mammary gland and gonadal axes, but it also influences different organs and systems, particularly metabolic functions. Current literature has mainly focused on the diagnosis, monitoring, and treatment of hyperprolactinemia. Due to the lack of a well-established effective treatment for hypoprolactinemia, it is not clinically emphasized. Therefore, data on its diagnosis is limited. Hypoprolactinemia has been associated with metabolic dysfunctions such as type 2 diabetes mellitus, fatty liver, dyslipidemia, fertility problems, sexual dysfunction, and increased cardiovascular disease. While often seen as a part of combined hormone deficiencies due to pituitary damage, isolated prolactin deficiency is rare. Hypoprolactinemia can serve as a marker for extensive pituitary gland damage and dysfunction.Low or undetectable serum prolactin levels and the absence of a sufficient prolactin peak in the thyrotropin-releasing hormone (TRH) stimulation test are considered diagnostic for hypoprolactinemia. Gender appears to influence both basal prolactin levels and TRH stimulation test responses. Basal prolactin levels of, at least, 5 ng/mL for males and 7 ng/mL for females can be used as cut-off levels for normal prolactin reserve. Minimum peak prolactin responses of 18 ng/mL for males and 41 ng/mL for females to TRH stimulation can exclude hypoprolactinemia. However, larger population studies across different age groups and sexes are needed to better define normal basal prolactin levels and prolactin responses to the TRH stimulation test.

2.
Mol Cell Biochem ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676812

RESUMO

The association between hypertension and obesity-induced cardiac damage is usually accepted. However, no studies have been focused on cardiac alterations in obesity, independently of blood pressure increase. It is well known that Cardiac TRH induces Left Ventricular Hypertrophy (LVH) and fibrosis, and its inhibition prevents the development of hypertrophy. Also, it has been described that the adiponectin leptin induces TRH expression. Thus, we hypothesized that in obesity, the increase in TRH induced by hyperleptinemia is responsible for LVH, until now mostly attributed to pressure load. We studied obese Agouti mice suffering from hypertension with hyperleptinemia and found a significant LVH development with increased TRH gene expression. Consequently, we found higher fibrotic (collagens and TGF-ß) and hypertrophic markers (BNP and ß-MHC) expression vs lean black controls. As pressure could explain these results, we treated obese mice with diuretic (hydrochlorothiazide 20 mg/kg/day) since weaning. Diuretic treatment was successful as the diuretic group was normotensive in contrast to control obese mice. Nevertheless, both groups showed LVH development, higher cardiac precursor TRH gene and peptide expressions and elevated fibrotic and hypertrophic markers expression, pointing out that obesity-induced LVH is not due to hypertension. In addition, we performed Cardiac TRH inhibition by specific siRNA injection compared to control siRNA treatment and evaluated cardiac damage. As expected, expressions and protein increase in hypertrophic and fibrotic markers observed in the AG mouse with the native cTRH system were not seen in the AG mouse with the cTRH silencing. Indeed, the AG + TRH-siRNA group showed hypertrophic markers expression and fibrosis measurements similar to the lean BL mice. On the whole, these results point out that the novel Leptin-Cardiac TRH pathway is responsible for the cardiac alterations present in hyperleptinemic obesity, independent of blood pressure, and cTRH long-term silencing since early stages totally prevent LVH development and cardiac fibrosis.

3.
Mol Cell Biochem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630362

RESUMO

Central TRH, a neuropeptide, is involved in cardiovascular regulation. We demonstrated that the overexpression of diencephalic TRH (dTRH) in SHR rats can be prevented by antisense treatment, normalizing blood pressure (BP). Valproate (VPA) is an inhibitor of histone deacetylases (HDAC) which modulates gene expression through epigenetic modifications such as DNA methylation. AIMS: Study the role of HDAC inhibition in the regulation of dTRH gene expression and its effect on the pathogenesis of hypertension. MAIN METHODS: We treated 7-weeks-old male and female SHR and WKY rats with VPA for 10 weeks and evaluated BP, dTRH mRNA and methylation gene status. KEY FINDINGS: VPA attenuated the elevated BP and dTRH mRNA expression characteristic of SHR. Indeed, we found a significant 62% reduction in dTRH mRNA expression in the SHR + VPA group compared to control SHR. The decrease TRH mRNA expression induced by VPA was confirmed "in vitro" in a primary neuron culture using trichostatin A. With methylation specific PCR we demonstrated a significant increase in TRH promoter DNA methylation level in SHR + VPA group compared to control SHR. After 2 weeks of treatment interruption, rats were mated. Although they did not receive any treatment, the offspring born from VPA-treated SHR parents showed similar changes in BP, dTRH expression and methylation status, implying a transgenerational inheritance. Our findings suggest that dTRH modulation by epigenetics mechanism affects BP and could be inherited by the next generation in SHR rats.

4.
Zoolog Sci ; 41(1): 32-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587515

RESUMO

Bullfrog (Rana catesbeiana) larvae inhabiting the main island of Japan overwinter as preclimax animals, whereas the larvae that reached climax in summer complete metamorphosis. We analyzed the mRNA expression levels of the adenohypophyseal hormones, hypothalamic hormones, and their receptors that are involved in controlling metamorphosis in tadpoles at various developmental stages available in summer and winter in order to understand the hormonal mechanism regulating metamorphosis progression. Corticotropin-releasing factor (CRF) and thyrotropin ß-subunit (TSHß) mRNA expression was enhanced as they reached the climax stage in metamorphosing summer tadpoles, although type 2 CRF receptor (CRFR2) mRNA levels demonstrated a tendency of elevation, indicating the activation of the hypothalamo-hypophyseal axis for stimulating the release of thyroid hormone in summer. Arginine vasotocin (AVT) mRNA levels were elevated as metamorphosis progressed, but mRNA expression levels were not synchronized with those of proopiomelanocortin (POMC) and V1b-type AVT receptor (V1bR). The elevation of mRNA levels of prolactin (PRL) 1A and type 3 thyrotropin-releasing hormone receptor (TRHR3), but not of thyrotropin-releasing hormone (TRH) precursor mRNA levels, was noted in climactic tadpoles, indicating that PRL mRNA levels are not simply dependent on the expression levels of TRH precursor mRNA. In the preclimactic larvae captured in winter, which are in metamorphic stasis, mRNA levels of pituitary hormones, hypothalamic factors, and their receptors remained low or at levels similar to those of the larvae captured in summer. These results indicate the relationship between the mRNA expression of metamorphosis-related factors and the seasonal progression/stasis of metamorphosis.


Assuntos
Hormônios Hipofisários , Prolactina , Animais , Estações do Ano , Japão , Larva/genética
5.
Pituitary ; 27(3): 277-286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700812

RESUMO

PURPOSE: We aimed to investigate the prevalence and the diagnostic criteria of hypoprolactinemia in patients with panhypopituitarism and the effects of hypoprolactinemia on depression and sexual functions. MATERIALS AND METHODS: Forty-eight patients with panhypopituitarism and 20 healthy volunteers were included. Basal hormone levels were measured and a TRH stimulation test was performed. For the evaluation of sexual functions, questionnaries of Female Sexual Functional Index (FSFI) for females and International Erectile Functional Index for males were performed to the subjects. Depressive symptoms were evaluated by Beck Depression Envontory score (BDI-II). RESULTS: The peak PRL response to TRH stimulation test at 5th percentile in the control group was 18.6 ng/ml in males and 41.6 ng/ml in females and accepted as the cut-offs for sufficient response of PRL. Prolactin was insufficient in 42(87.5%) patients. A basal PRL level of ≤ 5.7 ng/ml in males and 7.11 ng/ml in females was 100% specific in predicting an inadequate response to TRH stimulation test with 80% and 70% sensitivity respectively. A basal PRL level of ≥ 8.5 ng/dl in males was 100% specific and 76% sensitive, and in females a level of ≥ 15.2 ng/dl was 96% specific and 66% sensitive in predicting an adequate response to TRH. PRL deficient patients with panhypopituitarism had higher depression scores compared to the controls, lower sexual function scores in males. CONCLUSION: PRL deficiency is prevalent among individuals with panhypopituitarism, with the potential to result in elevated depression scores in both sexes and impaired sexual functions in males. A basal PRL level seems to be sufficient for the diagnosis of hypoprolactinemia in routine clinical practice.


Assuntos
Depressão , Hipopituitarismo , Prolactina , Humanos , Masculino , Hipopituitarismo/diagnóstico , Hipopituitarismo/sangue , Hipopituitarismo/epidemiologia , Feminino , Prolactina/sangue , Adulto , Depressão/epidemiologia , Depressão/sangue , Depressão/diagnóstico , Prevalência , Pessoa de Meia-Idade , Hormônio Liberador de Tireotropina , Estudos de Casos e Controles , Adulto Jovem
6.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892044

RESUMO

Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.


Assuntos
Tonsila do Cerebelo , Ansiedade , Restrição Calórica , Ritmo Circadiano , Corticosterona , Ratos Wistar , Hormônio Liberador de Tireotropina , Animais , Ansiedade/metabolismo , Ratos , Masculino , Tonsila do Cerebelo/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Restrição Calórica/métodos , Corticosterona/sangue , Regulação para Baixo , Comportamento Alimentar , Jejum , Ingestão de Alimentos , Peso Corporal
7.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233473

RESUMO

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.


Assuntos
Aminopeptidases , Leucil Aminopeptidase , Humanos , Aminopeptidases/química , Aminopeptidases/metabolismo , Leucil Aminopeptidase/química , Peptídeos/química , Antígenos CD13
8.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446225

RESUMO

Thyrotropin-releasing hormone (TRH) is a tripeptide that regulates the neuroendocrine thyroid axis. Moreover, its widespread brain distribution has indicated that it is a relevant neuromodulator of behaviors such as feeding, arousal, anxiety, and locomotion. Importantly, it is also a neurotrophic peptide, and thus may halt the development of neurodegenerative diseases and improve mood-related disorders. Its neuroprotective actions on those pathologies and behaviors have been limited due to its poor intestinal and blood-brain barrier permeability, and because it is rapidly degraded by a serum enzyme. As new strategies such as TRH intranasal delivery emerge, a renewed interest in the peptide has arisen. TRH analogs have proven to be safe in animals and humans, while not inducing alterations in thyroid hormones' levels. In this review, we integrate research from different approaches, aiming to demonstrate the therapeutic effects of TRH, and to summarize new efforts to prolong and facilitate the peptide's actions to improve symptoms and the progression of several pathologies.


Assuntos
Encéfalo , Hormônio Liberador de Tireotropina , Animais , Humanos , Hormônio Liberador de Tireotropina/uso terapêutico , Hormônio Liberador de Tireotropina/metabolismo , Encéfalo/metabolismo , Glândula Tireoide/metabolismo , Peptídeos/metabolismo , Hormônios Tireóideos/metabolismo
9.
BMC Neurosci ; 23(1): 9, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189807

RESUMO

BACKGROUND: The TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of neuropathologies, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer's and Parkinson's disease, major depression, migraine and epilepsy are influenced by the gut microbiome and is mediated by the vagus nerve. The antibiotic rifaximin (RF) does not cross the gut-blood barrier. It changes the composition of the gut microbiome resulting in therapeutic benefits for traveler's diarrhea, hepatic encephalopathy, and prostatitis. TRH and TRH-like peptides, with the structure pGlu-X-Pro-NH2, where "X" can be any amino acid residue, have reproduction-enhancing, caloric-restriction-like, anti-aging, pancreatic-ß cell-, cardiovascular-, and neuroprotective effects. TRH and TRH-like peptides occur not only throughout the CNS but also in peripheral tissues. To elucidate the involvement of TRH-like peptides in brain-gut-reproductive system interactions 16 male Sprague-Dawley rats, 203 ± 6 g, were divided into 4 groups (n = 4/group): the control (CON) group remained on ad libitum Purina rodent chow and water for 10 days until decapitation, acute (AC) group receiving 150 mg RF/kg powdered rodent chow for 24 h providing 150 mg RF/kg body weight for 200 g rats, chronic (CHR) animals receiving RF for 10 days; withdrawal (WD) rats receiving RF for 8 days and then normal chow for 2 days. RESULTS: Significant changes in the levels of TRH and TRH-like peptides occurred throughout the brain and peripheral tissues in response to RF. The number of significant changes in TRH and TRH-like peptide levels in brain resulting from RF treatment, in descending order were: medulla (16), piriform cortex (8), nucleus accumbens (7), frontal cortex (5), striatum (3), amygdala (3), entorhinal cortex (3), anterior (2), and posterior cingulate (2), hippocampus (1), hypothalamus (0) and cerebellum (0). The corresponding ranking for peripheral tissues were: prostate (6), adrenals (4), pancreas (3), liver (2), testis (1), heart (0). CONCLUSIONS: The sensitivity of TRH and TRH-like peptide expression to RF treatment, particularly in the medulla oblongata and prostate, is consistent with the participation of these peptides in the therapeutic effects of RF.


Assuntos
Diarreia , Hormônio Liberador de Tireotropina , Animais , Encéfalo/metabolismo , Diarreia/metabolismo , Feminino , Masculino , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Rifaximina/farmacologia , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/farmacologia , Viagem
10.
Endocr J ; 69(1): 101-105, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34433736

RESUMO

Bexarotene-induced central hypothyroidism (CH), for which levothyroxine (LT4) replacement is recommended, has been shown to be caused by pituitary but not hypothalamic disorder experimentally, though the underlying mechanism in humans remains unclear. Here, the pathophysiology of bexarotene-induced CH was examined using a TRH stimulation test in cutaneous T-cell lymphoma (CTCL) patients. In this retrospective longitudinal observational study, serum TSH and free T4 (F-T4) levels were measured in 10 euthyroid patients with CTCL during 24 weeks of bexarotene treatment. TRH stimulation testing was performed following CH diagnosis, with LT4 replacement dosage adjusted to maintain F-T4 at the pre-treatment level. After one week of bexarotene administration, all 10 patients developed CH, based on combined findings of low or low-normal F-T4 with low or normal TSH levels. TSH peak response after a stimulation test at one week was reached at 30 minutes. However, that was <4 µIU/mL in all patients, indicating a blunted though not exaggerated and delayed TSH response. In eight who continued bexarotene for 24 weeks, median LT4 replacement dosage was 125 (range, 75-150) µg/day. TSH level at 30 as well as 15, 60, 90, and 120 minutes after TRH stimulation was significantly correlated with LT4 replacement dosage (ρ = -0.913, p = 0.002), whereas TSH and F-T4 basal levels at one week were not. These results suggest that pituitary hypothyroidism is responsible for bexarotene-induced CH, while TSH levels after TRH stimulation precisely reflect residual pituitary-thyroid function in patients receiving bexarotene.


Assuntos
Hipotireoidismo , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Bexaroteno , Humanos , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/diagnóstico , Linfoma Cutâneo de Células T/complicações , Linfoma Cutâneo de Células T/diagnóstico , Linfoma Cutâneo de Células T/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Cutâneas/complicações , Tireotropina , Hormônio Liberador de Tireotropina , Tiroxina , Tri-Iodotironina
11.
J Fish Dis ; 45(11): 1699-1709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920381

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is an important foodborne pathogen known to cause severe enteric disease. Thus, timely detection of V. parahaemolyticus in seafood is crucial to prevent food poisoning and reduce economic losses. Traditional lateral flow immunoassay strips (LFIS) required good labelling materials and pairing of two antibodies, which made them costly and difficult to manufacture. In this study, a label-free and lac dye coloration-based LFIS (LD-LFIS) to detect trh+ V. parahaemolyticus was developed for the first time. Lac dye was used to stain V. parahaemolyticus, and LFIS was used to detect stained bacteria. Dimethyl sulphoxide (DMSO) and simultaneous mordanting were chosen as the best solvent and the best staining method for lac dye. In addition, three mordants [KAl(SO4 )2 ·12H2 O, NH4 Fe(SO4 )2 ·12H2 O, and AlCl3 ·6H2 O] were selected to improve dyeing efficiency. The detection limit of LD-LFIS was 3.9 × 105 CFU/ml when NH4 Fe(SO4 )2 ·12H2 O was used as mordant. Feasibility of the LD-LFIS method was verified by detecting trh+ V. parahaemolyticus in true and spiked seafood samples. The method developed in this study is expected to reduce restrictions on labelling materials and pairing of two antibodies on LFIS, and proposes a novel idea for the rapid detection of V. parahaemolyticus in seafood.


Assuntos
Doenças dos Peixes , Vibrio parahaemolyticus , Animais , Compostos Azo , Dimetil Sulfóxido , Imunoensaio , Alimentos Marinhos/microbiologia , Solventes
12.
J Integr Neurosci ; 21(2): 47, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35364635

RESUMO

Thyrotropin-releasing hormone (TRH) and its receptors are expressed in the hypothalamus and limbic regions. Brain thyrotropin-releasing hormone actions are exerted directly through its receptors and indirectly by modulating the effects of neurotransmitters such as glutamate, gamma-aminobutyric acid, acetylcholine, and dopamine. The thyrotropin-releasing hormone has been implicated in eating and mood regulation. We integrate studies that analyze the role of limbic thyrotropin-releasing hormone on displaying depressive- and anxiety-like behaviors and anorexia or hyperphagia. Since the decade of 1970s, different efforts have been made to identify some of the thyrotropin-releasing hormone effects and its analogs in feeding regulation or to ameliorate symptoms in patients diagnosed with mood disorders, and to correlate anxious or depressive parameters with thyrotropin-releasing hormone levels in the cerebrospinal fluid or its expression in postmortem brain areas of affected patients. Pharmacological studies where the thyrotropin-releasing hormone is administered to animals by different routes and to distinct brain areas have elucidated its actions in behavioral changes of mood and feeding parameters. In addition, a variety of animal models of depression, anxiety, or anorexia and hyperphagia has suggested the association between the hypothalamic and limbic TRHergic system and the regulation of mood and feeding alterations. Different approaches employ the administration of anti-depressant, anxiolytic or anorectic agents to animals and describe changes in thyrotropin-releasing hormone content or expression in hypothalamic or limbic regions. The different effects on mood that result from modulating thyrotropin-releasing hormone expression may be beneficial to treat patients diagnosed with eating disorders.


Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Ansiedade , Encéfalo/metabolismo , Humanos , Hipotálamo/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/farmacologia
13.
J Endocrinol Invest ; 44(8): 1597-1607, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33320308

RESUMO

The non-thyroidal illness syndrome (NTIS) was first reported in the 1970s as a remarkable ensemble of changes in serum TH (TH) concentrations occurring in probably any severe illness. Ever since, NTIS has remained an intriguing phenomenon not only because of the robustness of the decrease in serum triiodothyronine (T3), but also by its clear correlation with morbidity and mortality. In recent years, it has become clear that (parenteral) feeding in patients with critical illness should be taken into account as a major determinant not only of NTIS but also of clinical outcome. Moreover, both experimental animal and clinical studies have shown that tissue TH concentrations during NTIS do not necessarily reflect serum low TH concentrations and may decrease, remain unaltered, or even increase according to the organ and type of illness studied. These differential changes now have a solid basis in molecular studies on organ-specific TH transporters, receptors and deiodinases. Finally, the role of inflammatory pathways in these non-systemic changes has begun to be clarified. A fascinating role for TH metabolism in innate immune cells, including neutrophils and monocytes/macrophages, was reported in recent years, but there is no evidence at this early stage that this may be a determinant of susceptibility to infections. Although endocrinologists have been tempted to correct NTIS by TH supplementation, there is at present insufficient evidence that this is beneficial. Thus, there is a clear need for adequately powered randomized clinical trials (RCT) with clinically relevant endpoints to fill this knowledge gap.


Assuntos
Síndromes do Eutireóideo Doente , Hormônios Tireóideos/sangue , Diagnóstico Diferencial , Gerenciamento Clínico , Síndromes do Eutireóideo Doente/etiologia , Síndromes do Eutireóideo Doente/metabolismo , Síndromes do Eutireóideo Doente/fisiopatologia , Síndromes do Eutireóideo Doente/terapia , Humanos
14.
Chem Pharm Bull (Tokyo) ; 69(4): 314-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790077

RESUMO

We explored orally effective thyrotropin-releasing hormone (TRH) mimetics, which show high central nervous system effects in structure-activity relationship studies based on in vivo antagonistic activity on reserpine-induced hypothermia (anti-hypothermic effect) in mice starting from TRH. This led us to the TRH mimetic: [(4S,5S)-(5-methyl-2-oxooxazolidine-4-yl)carbonyl]-[3-(thiazol-4-yl)-L-alanyl]-L-prolinamide 1, which shows a higher anti-hypothermic effect compared with that of TRH after oral administration. We next attempted further chemical modification of the N- and C-terminus of 1 to find more orally effective TRH mimetics. As a result, we obtained several N- and C-terminus modified TRH mimetics which showed high anti-hypothermic effects.


Assuntos
Hipotermia/tratamento farmacológico , Prolina/análogos & derivados , Hormônio Liberador de Tireotropina/síntese química , Hormônio Liberador de Tireotropina/farmacologia , Administração Oral , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Masculino , Prolina/administração & dosagem , Prolina/síntese química , Prolina/química , Prolina/farmacologia , Ratos Sprague-Dawley , Hormônio Liberador de Tireotropina/administração & dosagem , Hormônio Liberador de Tireotropina/química
15.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207724

RESUMO

Selective antagonists of thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2), in order to enable a better understanding of this peptide's central functions, have not been identified. Using pGlu-Glu-Pro-NH2 ([Glu2]TRH) as a lead peptide and with modification at its central residue, our studies focused on some of its analogues synthesized as potential functional antagonists of TRH in the rodent brain. Among the peptides studied, the novel isomeric analogue [ß-Glu2]TRH was found to suppress the analeptic and antidepressant-like pharmacological activities of TRH without eliciting intrinsic effects in these paradigms. [ß-Glu2]TRH also completely reversed TRH's stimulation of acetylcholine turnover in the rat hippocampus without a cholinergic activity of its own, which was demonstrated through in vivo microdialysis experiments. Altogether, [ß-Glu2]TRH emerged as the first selective functional antagonist of TRH's prominent cholinergic actions, by which this endogenous peptide elicits a vast array of central effects.


Assuntos
Antidepressivos , Estimulantes do Sistema Nervoso Central , Hipocampo/metabolismo , Peptídeos , Hormônio Liberador de Tireotropina/antagonistas & inibidores , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacologia , Hipocampo/patologia , Masculino , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Hormônio Liberador de Tireotropina/metabolismo
16.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500828

RESUMO

After we identified pGlu-ßGlu-Pro-NH2 as the first functional antagonist of the cholinergic central actions of the thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2), we became interested in finding the receptor-associated mechanism responsible for this antagonism. By utilizing a human TRH receptor (hTRH-R) homology model, we first refined the active binding site within the transmembrane bundle of this receptor to enhance TRH's binding affinity. However, this binding site did not accommodate the TRH antagonist. This directed us to consider a potential allosteric binding site in the extracellular domain (ECD). Searches for ECD binding pockets prompted the remodeling of the extracellular loops and the N-terminus. We found that different trajectories of ECDs produced novel binding cavities that were then systematically probed with TRH, as well as its antagonist. This led us to establish not only a surface-recognition binding site for TRH, but also an allosteric site that exhibited a selective and high-affinity binding for pGlu-ßGlu-Pro-NH2. The allosteric binding of this TRH antagonist is more robust than TRH's binding to its own active site. The findings reported here may shed light on the mechanisms and the multimodal roles by which the ECD of a TRH receptor is involved in agonist and/or antagonist actions.


Assuntos
Receptores do Hormônio Liberador da Tireotropina/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Domínio Catalítico , Humanos
17.
Front Neuroendocrinol ; 52: 29-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935915

RESUMO

Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.


Assuntos
Neoplasias da Mama/metabolismo , Hipotálamo/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Degenerações Espinocerebelares/tratamento farmacológico , Doenças da Glândula Tireoide/metabolismo , Glândula Tireoide/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/uso terapêutico , Animais , Humanos , Doenças da Glândula Tireoide/diagnóstico
18.
Endocr J ; 67(2): 125-130, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31645528

RESUMO

A 74-year-old asymptomatic Japanese man with suspected thyroid dysfunction was referred to our hospital. He had an elevated TSH (53.8 mIU/L; reference interval: 0.5-5.0) despite a free T4 (FT4) level (1.4 ng/dL; reference interval: 0.9-1.6). Further analysis revealed macro-TSH. A notable finding was that a 500-µg TRH stimulation test revealed a blunted free T3 (FT3) response despite a prolonged TSH response. Macro-TSH typically presents with inappropriately marked elevation of serum TSH levels compared with other thyroid hormones, as exhibited in our case. However, the level of TSH elevation that might differentiate macro-TSH from subclinical hypothyroidism is poorly known. We retrospectively analyzed 8,183 concurrent measurements of TSH and FT4 in individuals previously examined in our hospital to define the cut-off value for screening cases of inappropriate TSH elevation. FT4 values were rounded off to one decimal place, and the 97.5th percentile of TSH against each FT4 value was calculated. The data of our patient and that of 30 cases of macro-TSH extracted from the English literature were then assessed. When the approximate curve obtained from the 97.5th percentile of TSH values was defined as the cut-off value [Log10TSH = 0.700 + 1.549/{1 + (FT4/0.844)6.854}], 25 of the 31 (80.6%) macro-TSH cases were identified. In conclusion, we report for the first time a case of macro-TSH demonstrating an abnormal FT3 response to TRH. A cut-off value of TSH adjusted to the FT4 level may be a good method of screening for inappropriate TSH elevation (or inappropriate hyperthyrotropinemia) including those caused by macro-TSH.


Assuntos
Complexo Antígeno-Anticorpo/sangue , Testes de Função Tireóidea , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue , Idoso , Complexo Antígeno-Anticorpo/imunologia , Humanos , Masculino , Testes de Função Hipofisária , Valores de Referência , Tireotropina/imunologia , Hormônio Liberador de Tireotropina
19.
Neurosurg Focus ; 48(3): E8, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114564

RESUMO

OBJECTIVE: Neurosurgery training programs aim to train specialists. In addition, they are expected to equip the residents with necessary knowledge and skills for academic development. This study aims to gain insights into academic productivity after neurosurgeons graduated from residency training in Turkey. METHODS: An electronic survey was sent to all Turkish Neurosurgical Society members (n = 1662 neurosurgeons) between September and November 2019. The number of participants was 289 (17.4%). Participants were divided into subgroups based on three main factors: training institution type (university hospital [UH] vs training and research hospital [TRH]), training institution annual case volume (low [< 1000 or inadequate cranial/spinal case numbers] vs high [> 1000 and adequate cranial/spinal case numbers]), and training program accreditation status (accredited vs nonaccredited). RESULTS: The majority of the participants (64.7%) graduated from the UHs. Those trained at UHs (vs TRHs) and high- (vs low-) volume centers had their dissertations more frequently published in Science Citation Index/Science Citation Index-Expanded journals, gave more oral presentations after residency, had higher h-indices, had higher rates of reviewership for academic journals, and had greater participation in projects with grant support. In addition, graduates of accredited programs reported more PhD degrees than those of nonaccredited programs. CONCLUSIONS: Neurosurgeons trained in higher-case-volume, accredited programs, mostly in the UHs, performed better in terms of scientific activities and productivity in Turkey. Strong research emphasis and supportive measures should be instituted to increase academic performance during and after residency training.


Assuntos
Internato e Residência/estatística & dados numéricos , Neurocirurgiões/educação , Neurocirurgia/educação , Procedimentos Neurocirúrgicos/educação , Desempenho Acadêmico/estatística & dados numéricos , Acreditação/estatística & dados numéricos , Humanos , Inquéritos e Questionários , Turquia
20.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093298

RESUMO

It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.


Assuntos
Proteínas Aviárias/imunologia , Linfócitos B/imunologia , Bolsa de Fabricius/imunologia , Galinhas/imunologia , Grelina/imunologia , Hormônio Liberador de Hormônio do Crescimento/imunologia , Hormônio do Crescimento/imunologia , Somatostatina/imunologia , Hormônio Liberador de Tireotropina/imunologia , Animais , Linfócitos B/citologia , Bolsa de Fabricius/citologia , Técnicas de Cultura de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA