Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682497

RESUMO

Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca2+-selective channel, TRPV5, in cultured unpolarized cells. Using biotinylation of cell surface proteins, we asked whether MUC1 influences endocytosis of TRPV5 and another Ca2+-selective TRP channel, TRPV6, in cultured polarized epithelial cells. Our results indicate that MUC1 reduces endocytosis of both channels, enhancing cell surface expression. Further, we found that mice lacking MUC1 lose apical localization of TRPV5 and TRPV6 in the renal tubular and duodenal epithelium. Females, but not males, lacking MUC1 exhibit reduced blood Ca2+. However, mice lacking MUC1 exhibited no differences in basal urinary Ca excretion or Ca retention in response to PTH receptor signaling, suggesting compensation by transport mechanisms independent of TRPV5 and TRPV6. Finally, humans with autosomal dominant tubulointerstitial kidney disease due to frame-shift mutation of MUC1 (ADTKD-MUC1) exhibit reduced plasma Ca concentrations compared to control individuals with mutations in the gene encoding uromodulin (ADTKD-UMOD), consistent with MUC1 haploinsufficiency causing reduced bodily Ca2+. In summary, our results provide further insight into the role of MUC1 in Ca2+-selective TRP channel endocytosis and the overall effects on Ca concentrations.


Assuntos
Cálcio , Mucina-1 , Canais de Cátion TRPV , Animais , Feminino , Humanos , Camundongos , Cálcio/sangue , Cálcio/metabolismo , Cálcio/urina , Membrana Celular/metabolismo , Células Cultivadas , Mucina-1/genética , Mucina-1/metabolismo , Canais de Cátion TRPV/metabolismo , Células Epiteliais/metabolismo , Fatores Sexuais , Mutação , Transporte Proteico/genética
2.
J Transl Med ; 21(1): 327, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198647

RESUMO

The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.


Assuntos
Antineoplásicos , Osteoporose , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Osteoporose/metabolismo , Osteoclastos , Osso e Ossos/metabolismo , Antineoplásicos/farmacologia , Canais de Cátion TRPV
3.
J Dairy Sci ; 106(11): 7396-7406, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641274

RESUMO

The Ca2+-selective epithelial channel TRPV5 plays a significant role in renal calcium reabsorption and improving osteoporosis (OP). In this study, we investigated the mechanisms of yak milk on osteoporosis mice in TRPV5-mediated Ca2+ reabsorption in the kidney. We observed that treatment of OP mice with yak milk reconstructed bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP and ALP in serum. Additionally, yak milk reduced the level of parathyroid hormone (PTH) and elevated 1,25-(OH)2D3 and calcitonin (CT), and inhibited the excretion of Ca/Cr and Pi/Cr in OP mice, which explained by regulating hormone levels and thus enhance the renal Ca2+ reabsorption. Further analysis exhibited that yak milk upregulated the expression of TRPV5 protein and mRNA as well as calbindin-D28k in OP mice kidneys. Overall, these outcomes demonstrate that yak milk enhances renal Ca2+ reabsorption through the TRPV5 pathway synergistically with calbindin-D28k, thus ameliorating OP mice. This provides a new perspective for yak milk as a nutritional supplement to prevent osteoporosis.

4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901904

RESUMO

TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered gatekeepers of this cation transcellular transport. Intracellular Ca2+ exerts a negative control over the activity of these channels by promoting inactivation. TRPV5 and TRPV6 inactivation has been divided into fast and slow phases based on their kinetics. While slow inactivation is common to both channels, fast inactivation is characteristic of TRPV6. It has been proposed that the fast phase depends on Ca2+ binding and that the slow phase depends on the binding of the Ca2+/Calmodulin complex to the internal gate of the channels. Here, by means of structural analyses, site-directed mutagenesis, electrophysiology, and molecular dynamic simulations, we identified a specific set of amino acids and interactions that determine the inactivation kinetics of mammalian TRPV5 and TRPV6 channels. We propose that the association between the intracellular helix-loop-helix (HLH) domain and the TRP domain helix (TDh) favors the faster inactivation kinetics observed in mammalian TRPV6 channels.


Assuntos
Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Epiteliais/metabolismo , Sequências Hélice-Alça-Hélice , Mamíferos/metabolismo , Canais de Cátion TRPV/metabolismo , Humanos
5.
Pflugers Arch ; 474(8): 885-900, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842482

RESUMO

Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.


Assuntos
Cálcio , Magnésio , Cálcio/metabolismo , Líquido Extracelular/metabolismo , Homeostase , Rim/metabolismo , Túbulos Renais Distais/metabolismo , Magnésio/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(38): 19176-19186, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31488724

RESUMO

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) was previously considered to be a paracellular channelopathy caused by mutations in the claudin-16 and claudin-19 genes. Here, we provide evidence that a missense FHHNC mutation c.908C>G (p.T303R) in the claudin-16 gene interferes with the phosphorylation in the claudin-16 protein. The claudin-16 protein carrying phosphorylation at residue T303 is localized in the distal convoluted tubule (DCT) but not in the thick ascending limb (TAL) of the mouse kidney. The phosphomimetic claudin-16 protein carrying the T303E mutation but not the wildtype claudin-16 or the T303R mutant protein increases the Trpv5 channel conductance and membrane abundance in human kidney cells. Phosphorylated claudin-16 and Trpv5 are colocalized in the luminal membrane of the mouse DCT tubule; phosphomimetic claudin-16 and Trpv5 interact in the yeast and mammalian cell membranes. Knockdown of claudin-16 gene expression in transgenic mouse kidney delocalizes Trpv5 from the luminal membrane in the DCT. Unlike wildtype claudin-16, phosphomimetic claudin-16 is delocalized from the tight junction but relocated to the apical membrane in renal epithelial cells because of diminished binding affinity to ZO-1. High-Ca2+ diet reduces the phosphorylation of claudin-16 protein at T303 in the DCT of mouse kidney via the PTH signaling cascade. Knockout of the PTH receptor, PTH1R, from the mouse kidney abrogates the claudin-16 phosphorylation at T303. Together, these results suggest a pathogenic mechanism for FHHNC involving transcellular Ca2+ pathway in the DCT and identify a molecular component in renal Ca2+ homeostasis under direct regulation of PTH.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Claudinas/metabolismo , Túbulos Renais Distais/metabolismo , Canais de Cátion TRPV/metabolismo , Junções Íntimas/metabolismo , Transcitose , Animais , Canais de Cálcio/genética , Permeabilidade da Membrana Celular , Claudinas/antagonistas & inibidores , Claudinas/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
7.
Arch Biochem Biophys ; 698: 108724, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309615

RESUMO

Abdominal aortic aneurysm (AAA) is a fatal vascular disease with insidious symptoms. However, the mechanism behind its development remains unclear. The transient receptor potential vanilloid (TRPV) family has crucial protective effects against cardiovascular diseases, but the role of TRPV5 in AAA has yet to be reported. In this study, ApoE-/- mice were intraperitoneally injected with AAV-GFP or AAV-TRPV5. After 30 days, mice were further administered with angiotensin II (Ang II, 1.44 mg/kg/day) by using osmotic pumps to induce the AAA model or Saline for 28 days, (i.e., Saline + AAV-GFP, Saline + AAV-TRPV5, Ang II + AAV-GFP and Ang II + AAV-TRPV5 groups were established). Compared with the control group, the incidence of AAA and the maximal diameter of the abdominal aorta markedly decreased in Ang II + AAV-TRPV5, which was detected by vascular ultrasound at 28 day. Meanwhile, less collagen and elastin degradation were observed in the Ang II + AAV-TRPV5 group by using Masson and Elastin stains. Moreover, more α-SMA and less MMP2 was observed in the abdominal aortas collected at 28 day by immunohistochemistry. In vitro, primary mouse vascular smooth muscle cells (VSMCs) were treated with Ang II (1 µM) to induce phenotype switch. Sh-TRPV5 and AdTRPV5 were used to transfect VSMCs. PCR and Western blotting were used to access the expression of contractile marker, including α-SMA and SM-22α. The results showed that the mRNA and protein level of α-SMA and SM-22α were decreased under the stimulation of Ang II, but could be attenuated by TRPV5 overexpression. The cell scratch assay demonstrated that the migration ability of VSMCs was increased in Ang II treated group and could be ameliorated by TRPV5 overexpression. Above all, VSMCs transformed from the contractile into secretory phenotype under Ang II stimuli, but could be rescued by TRPV5 overexpression. Furthermore, TRPV5 overexpression suppressed the increased expression of KLF4 induced by Ang II treatment in VSMCs. The data demonstrated that TRPV5 could inhibit AAA formation and play a critical role in the VSMC phenotype switch by downregulating KLF4, suggesting TRPV5 as a new strategy for treating AAA.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Canais de Cálcio/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Canais de Cátion TRPV/farmacologia , Angiotensina II , Animais , Aorta/citologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Canais de Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Dependovirus/genética , Regulação para Baixo , Técnicas de Transferência de Genes , Fator 4 Semelhante a Kruppel , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Canais de Cátion TRPV/genética , Regulação para Cima
8.
World J Urol ; 38(5): 1311-1322, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31428848

RESUMO

PURPOSE: Present study was intended to investigate the potential contribution of TRPV5 gene polymorphisms with calcium urolithiasis in the population of West Bengal, India. METHODS: A case-control study was performed with 152 calcium urolithiasis patients and 144 corresponding healthy controls. Epidemiological and clinical parameters were documented as well as peripheral blood sample was collected from each individual, followed by genomic DNA isolation. Then to identify genetic variants of TRPV5, the entire coding region and exon-intron boundaries of the gene were amplified by polymerase chain reaction using specific oligonucleotide primers and then genotypes were determined by bi-directional DNA sequencing and sequence alignment between case and control individuals. RESULTS: Urinary calcium excretion was found to be significantly high (p value < 0.0001) in urolithiasis patients as compared to controls. A total of 14 SNPs were obtained of which one non-synonymous (rs4236480; p.Arg154His; CGT > CAT), one synonymous (rs4252417; p.Tyr278Tyr; TAC > TAT) and three intronic (rs4252400, rs4252402, rs4236481) SNPs were found to be significantly associated with increased risk of urolithiasis. For non-synonymous SNP rs4236480, 'A' was found to be the risk allele (OR 1.77, 95% CI 1.24-2.51; p value 0.001) and genotype frequency analysis revealed that individuals carrying variant genotype AA were more prone to the disease than individuals with wild genotype GG (OR 3.09, 95% CI 1.26-7.59; p value 0.0136), indicating AA as the risk genotype. CONCLUSIONS: The non-synonymous SNP rs4236480 showed significant association with urolithiasis risk in West Bengal population of India. Future translational and larger population-based studies are required to validate our finding.


Assuntos
Cálcio/análise , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/genética , Urolitíase/genética , Adulto , Cálcio/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Urolitíase/metabolismo
9.
Reprod Domest Anim ; 55(11): 1619-1628, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920930

RESUMO

Sperm cells perform precise chemotactic and thermotactic movement which is crucial for fertilization. However, the key molecules involved in detection of different chemical and physical stimuli which guide the sperm during navigation are not well understood. Ca2+ -signalling mediated by ion channels seem to play important role in motility and other fertility parameters. In this work, we explored the endogenous localization pattern of TRPV channels in the mature spermatozoa of avian species. Using sperm from white pekin duck (Anas platyrhynchos) as the representative avian model, we demonstrate that duck sperm endogenously express the thermosensitive channels TRPV1, TRPV2, TRPV3, TRPV4, and highly Ca2+ -selective channels TRPV5 and TRPV6 in specific yet differential locations. All of these TRPV channels are enriched in the sperm tail, indicating their relevance in sperm motility. Interestingly, the TRPV3 and TRPV4 channels are present in the mitochondrial region. Calcium selective TRPV5 channel is exclusively present in sperm tail and is most abundant among the TRPV channels. This is the first report describing the endogenous presence of TRPV2 and TRPV3 channels in the sperm of any species. Using confocal imaging and super-resolution imaging, we demonstrate that though the TRPV channels are evolutionarily closely related, they have distinct localization pattern in the duck sperm, which could impact their role in fertilization.


Assuntos
Patos , Espermatozoides/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Regulação da Expressão Gênica , Masculino , Microscopia Confocal/veterinária , Mitocôndrias , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Canais de Cátion TRPV/genética
10.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075037

RESUMO

Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1-5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.


Assuntos
Calmodulina/metabolismo , Canais Iônicos/metabolismo , Regulação Alostérica , Sinalização do Cálcio , Calmodulina/química , Humanos , Canais Iônicos/química , Canais de Potássio/química , Canais de Potássio/metabolismo , Domínios Proteicos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
11.
Cell Tissue Res ; 378(2): 163-173, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338584

RESUMO

An exceptionally low calcium (Ca2+) concentration in the inner ear endolymph ([Ca2+]endolymph) is crucial for proper auditory and vestibular function. The endolymphatic sac (ES) is believed to critically contribute to the maintenance of this low [Ca2+]endolymph. Here, we investigated the immunohistochemical localization of proteins that are presumably involved in the sensing and transport of extracellular Ca2+ in the murine ES epithelium. Light microscopic and fluorescence immunolabeling in paraffin-embedded murine ES tissue sections (male C57BL/6 mice, 6-8 weeks old) demonstrated the presence of the calcium-sensing receptor CaSR, transient receptor potential cation channel subtypes TRPV5 and TRPV6, sarco/endoplasmic reticulum Ca2+-ATPases SERCA1 and SERCA2, Na+/Ca2+ exchanger NCX2, and plasma membrane Ca2+ ATPases PMCA1 and PMCA4 in ES epithelial cells. These proteins exhibited (i) membranous (apical or basolateral) or cytoplasmic localization patterns, (ii) a proximal-to-distal labeling gradient within the ES, and (iii) different distribution patterns among ES epithelial cell types (mitochondria-rich cells (MRCs) and ribosome-rich cells (RRCs)). Notably, in the inner ear membranous labyrinth, CaSR was exclusively localized in MRCs, suggesting a unique role of the ES epithelium in CaSR-mediated sensing and control of [Ca2+]endolymph. Structural loss of the distal ES, which is consistently observed in Meniere's disease, may therefore critically disturb [Ca2+]endolymph and contribute to the pathogenesis of Meniere's disease.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Endolinfa/metabolismo , Saco Endolinfático/metabolismo , Epitélio/metabolismo , Animais , Masculino , Doença de Meniere/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
12.
J Cell Mol Med ; 22(10): 4738-4750, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30063124

RESUMO

The increasing of osteoclasts formation and activity because of oestrogen (E2) deficiency is very important in the aetiology of postmenopausal osteoporosis. Our previous studies showed that E2 inhibited osteoclastic bone resorption by increasing the expression of Transient Receptor Potential Vanilloid 5 (TRPV5) channel. However, the exact mechanism by which E2 increases TRPV5 expression is not fully elucidated. In this study, Western blot, quantitative real-time PCR, tartrate-resistant acid phosphatase staining, F-actin ring staining, chromatin immunoprecipitation and luciferase assay were applied to explore the mechanisms that E2-induced TRPV5 expression contributes to the inhibition of osteoclastogenesis. The results showed that silencing or overexpressing of TRPV5 significantly affected osteoclasts differentiation and activity. Silencing of TRPV5 obviously alleviated E2-inhibited osteoclastogenesis, resulting in increasing of bone resorption. E2 stimulated mature osteoclasts apoptosis by increasing TRPV5 expression. Further studies showed that E2 increased TRPV5 expression through the interaction of the oestrogen receptor α (ERα) with NF-κB, which could directly bind to the fragment of -286 nt ~ -277 nt in the promoter region of trpv5. Taken together, we conclude that TRPV5 plays a dominant effect in E2-mediated osteoclasts formation, bone resorption activity and osteoclasts apoptosis. Furthermore, NF-κB plays an important role in the transcriptional activation of E2-ERα stimulated TRPV5 expression.


Assuntos
Reabsorção Óssea/genética , Canais de Cálcio/genética , Receptor alfa de Estrogênio/genética , NF-kappa B/genética , Osteogênese/genética , Canais de Cátion TRPV/genética , Transcrição Gênica , Animais , Apoptose , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Canais de Cálcio/metabolismo , Diferenciação Celular , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
13.
Cell Physiol Biochem ; 51(5): 2309-2323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537737

RESUMO

BACKGROUND/AIMS: Chondrocyte apoptosis is a central pathological feature of cartilage in osteoarthritis (OA). Accumulating evidence suggests that calcium ions (Ca2+) are an important regulator of apoptosis. Previously, we reported that the transient receptor potential channel vanilloid (TRPV5) is upregulated in monoiodoacetic acid (MIA)-induced OA articular cartilage. METHODS: The protein levels of TRPV5, phosphorylated Ca2+/calmodulin-dependent kinase II (p-CaMKII), and total CaMKII were detected in vivo using western blotting techniques. Primary chondrocytes were isolated and cultured in vitro. Then, p-CAMKII was immunolocalized by immunofluorescence in chondrocytes. Fluo-4AM staining was used to assess intracellular Ca2+. Annexin V-fluorescein isothiocyanate / propidium iodide flow cytometric analysis was performed to determine chondrocyte apoptosis. Western blotting techniques were used to measure the expression of apoptosis-related proteins. RESULTS: We found that ruthenium red (aTRPV5inhibitor)or(1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperaze (KN-62) (an inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII) phosphorylation) can relieve or even reverse OA in vivo. We found that TRPV5 has a specific role in mediating extracellular Ca2+ influx leading to chondrocyte apoptosis in vitro. The apoptotic effect in chondrocytes was inhibited by KN-62. We found that activated p-CaMKII could elicit the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38, three important regulators of the mitogen-activated protein kinase (MAPK) cascade. Moreover, we also showed that activated p-CaMKII could elicit the phosphorylation of protein kinase B (Akt) and two important downstream regulators of mammalian target of rapamycin (mTOR): 4E-binding protein, and S61 kinase. CONCLUSION: Our results demonstrate that upregulated TRPV5 may be an important initiating factor that activates CaMKII phosphorylation via the mediation of Ca2+ influx. In turn, activated p-CaMKII plays a critical role in chondrocyte apoptosis via MAPK and Akt/mTOR pathways.


Assuntos
Apoptose , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Condrócitos/patologia , Osteoartrite/patologia , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Modelos Animais de Doenças , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteoartrite/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
14.
Cell Physiol Biochem ; 46(2): 687-698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621761

RESUMO

BACKGROUND/AIMS: Chondrocyte apoptosis is the most common pathological feature in cartilage in osteoarthritis (OA). Transient receptor potential channel vanilloid 5 (TRPV5) is important in regulating calcium ion (Ca2+) influx. Accumulating evidences suggest that Ca2+ is a major intracellular second messenger that can trigger cell apoptosis. Therefore, we investigate the potential role of TRPV5 in mediating Ca2+ influx to promote chondrocyte apoptosis in OA. METHODS: The monoiodoacetic acid (MIA)-induced rat OA model was assessed by macroscopic and radiographic analyses. Calmodulin protein immunolocalization was detected by immunohistochemistry. The mRNA and protein level of TRPV5, calmodulin and cleaved caspase-8 in articular cartilage were assessed by real time polymerase chain reaction and western blotting. Primary chondrocytes were isolated and cultured in vitro. TRPV5 small interfering RNA was used to silence TRPV5 in chondrocytes. Then, calmodulin and cleaved caspase-8 were immunolocalized by immunofluorescence in chondrocyte. Fluo-4AM staining was used to assess intracellular Ca2+ to reflect TRPV5 function of mediation Ca2+ influx. Annexin V-fluorescein isothiocyanatepropidium iodide flow cytometric analysis was performed to determine chondrocytes apoptosis. Western blotting techniques were used to measure the apoptosis-related proteins in chondrocyte level. RESULTS: Here, we reported TRPV5 was up-regulated in MIA-induced OA articular cartilage. Ruthenium red (a TRPV5 inhibitor) can relieve progression of joint destruction in vivo which promoted us to demonstrate the effect of TRPV5 in OA. We found that TRPV5 had a specific role in mediating extracellular Ca2+ influx leading to chondrocytes apoptosis in vitro. The apoptotic effect was inhibited even reversed by silencing TRPV5. Furthermore, we found that the increase Ca2+ influx triggered apoptosis by up-regulating the protein of death-associated protein, FAS-associated death domain, cleaved caspase-8, cleaved caspase-3, cleaved caspase-6, and cleaved caspase-7, and the up-regulated proteins were abolished by silencing TRPV5 or 1, 2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester (a Ca2+ chelating agent). CONCLUSION: The up-regulated TRPV5 could used be as an initiating factor that induces extrinsic chondrocyte apoptosis via the mediation of Ca2+ influx. These findings suggested TRPV5 could be an intriguing mediator for drug target in OA.


Assuntos
Apoptose , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Osteoartrite/patologia , Canais de Cátion TRPV/metabolismo , Animais , Apoptose/efeitos dos fármacos , Canais de Cálcio/genética , Quelantes de Cálcio/farmacologia , Calmodulina/genética , Calmodulina/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Ácido Iodoacético/toxicidade , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Rutênio Vermelho/farmacologia , Rutênio Vermelho/uso terapêutico , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Regulação para Cima/efeitos dos fármacos
15.
Pharmacol Res ; 136: 83-89, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170189

RESUMO

Compounds extracted from the cannabis plant, including the psychoactive Δ9-tetrahydrocannabinol (THC) and related phytocannabinoids, evoke multiple diverse biological actions as ligands of the G protein-coupled cannabinoid receptors CB1 and CB2. In addition, there is increasing evidence that phytocannabinoids also have non-CB targets, including several ion channels of the transient receptor potential superfamily. We investigated the effects of six non-THC phytocannabinoids on the epithelial calcium channels TRPV5 and TRPV6, and found that one of them, Δ9-tetrahydrocannabivarin (THCV), exerted a strong and concentration-dependent inhibitory effect on mammalian TRPV5 and TRPV6 and on the single zebrafish orthologue drTRPV5/6. Moreover, THCV attenuated the drTRPV5/6-dependent ossification in zebrafish embryos in vivo. Oppositely, 11-hydroxy-THCV (THCV-OH), a product of THCV metabolism in mammals, stimulated drTRPV5/6-mediated Ca2+ uptake and ossification. These results identify the epithelial calcium channels TRPV5 and TRPV6 as novel targets of phytocannabinoids, and suggest that THCV-containing products may modulate TRPV5- and TRPV6-dependent epithelial calcium transport.


Assuntos
Cálcio/fisiologia , Canabinoides/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Embrião não Mamífero , Epitélio/fisiologia , Células HEK293 , Humanos , Canais de Cátion TRPV/fisiologia , Peixe-Zebra
16.
Biochim Biophys Acta ; 1863(6 Pt B): 1408-17, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26705695

RESUMO

Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of "Ca(2+) genes" might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.


Assuntos
Canais de Cálcio/genética , Cálcio/metabolismo , Predisposição Genética para Doença/genética , Neoplasias/genética , Canais de Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína ORAI1 , Proteína ORAI2 , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
17.
Am J Physiol Renal Physiol ; 313(3): F629-F640, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539338

RESUMO

Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca2+ and Mg2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca2+, but not Mg2+, rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca2+ and Mg2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca2+ and Mg2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca2+ uptake by the kidney.


Assuntos
Cálcio/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Lactação/metabolismo , Magnésio/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Adaptação Fisiológica , Animais , Transporte Biológico , Calbindina 1/genética , Calbindina 1/metabolismo , Cálcio/urina , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Claudinas/genética , Claudinas/metabolismo , Feminino , Absorção Intestinal , Mucosa Intestinal/citologia , Rim/citologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Reabsorção Renal , Proteína G de Ligação ao Cálcio S100/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Vitamina D/análogos & derivados , Vitamina D/sangue , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo
18.
Am J Physiol Renal Physiol ; 312(6): F998-F1015, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274923

RESUMO

Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.


Assuntos
Cálcio/metabolismo , Diuréticos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Magnésio/metabolismo , Reabsorção Renal/efeitos dos fármacos , Animais , Transporte Biológico , Células Epiteliais/metabolismo , Humanos , Túbulos Renais/metabolismo
19.
Cell Physiol Biochem ; 42(1): 319-332, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28535500

RESUMO

BACKGROUND: Autophagy, a self-protective mechanism of chondrocytes, has become a promising target to impede the progress of osteoarthritis (OA). Autophagy is regulated by cytosolic Ca2+ activity and may thus be modified by the Ca2+ permeable transient receptor potential channel vanilloid 5 (TRPV5). Therefore, we investigated the potential role of TRPV5 in mediating Ca2+ influx and in inhibiting chondrocyte autophagy in a rat OA model. METHODS: The rat OA model was assessed by macroscopic and histological analyses. light chain 3B (LC3B) immunolocalization was detected by immunohistochemistry. TRPV5, LC3B and calmodulin in OA articular cartilage were assessed by real time polymerase chain reaction (RT-PCR) and western blotting. TRPV5 small interfering RNA (TRPV5 siRNA) were transfected into rat primary chondrocyte then the calmodulin and LC3B was detected by immunofluorescence. The functionality of the TRPV5 was assessed by Ca2+ influx. Western blot was used to measure autophagy-related proteins. RESULTS: We constructed a monosodium iodoacetate (MIA) -induced rat OA model and found that ruthenium red (TRPV5 inhibitor) slowed the progression of joint destruction. We found that the TRPV5 and calmodulin were up-regulated but LC3B was down-regulated in articular cartilage following prolonged progression of OA. Furthermore, the up-regulated TRPV5 channel caused an increase in the Ca2+ influx in chondrocytes. The up-regulation of TRPV5 stimulated Ca2+ influx, which inhibited autophagy by increasing the production of calmodulin, phosphorylation of calmodulin dependent protein kinases II (p-CAMK II), phosphorylation of Beclin1 (p-Beclin1), and protein of B-cell lymphoma-2 (Bcl-2), and attenuating ratio of LC3-II/ LC3-. CONCLUSION: Up-regulated TRPV5 as an initiating factor inhibited chondrocyte autophagy via the mediation of Ca2+ influx.


Assuntos
Autofagia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Osteoartrite/patologia , Canais de Cátion TRPV/metabolismo , Animais , Canais de Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Ácido Iodoacético/toxicidade , Articulação do Joelho/patologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Regulação para Cima
20.
Biochem Biophys Res Commun ; 492(3): 362-367, 2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-28847730

RESUMO

TRPV5 is a Ca2+-selective channel that plays a key role in the reabsorption of Ca2+ ions in the kidney. Recently, a rare L530R variation (rs757494578) of TRPV5 was found to be associated with recurrent kidney stones in a founder population. However, it was unclear to what extent this variation alters the structure and function of TRPV5. To evaluate the function and expression of the TRPV5 variant, Ca2+ uptake in Xenopus oocytes and western blot analysis were performed. The L530R variation abolished the Ca2+ uptake activity of TRPV5 in Xenopus oocytes. The variant protein was expressed with drastic reduction in complex glycosylation. To assess the structural effects of this L530R variation, TRPV5 was modeled based on the crystal structure of TRPV6 and molecular dynamics simulations were carried out. Simulation results showed that the L530R variation disrupts the hydrophobic interaction between L530 and L502, damaging the secondary structure of transmembrane domain 5. The variation also alters its interaction with membrane lipid molecules. Compared to the electroneutral L530, the positively charged R530 residue shifts the surface electrostatic potential towards positive. R530 is attracted to the negatively charged phosphate group rather than the hydrophobic carbon atoms of membrane lipids. This shifts the pore helix where R530 is located and the D542 residue in the Ca2+-selective filter towards the surface of the membrane. These alterations may lead to misfolding of TRPV5, reduction in translocation of the channel to the plasma membrane and/or impaired Ca2+ transport function of the channel, and ultimately disrupt TRPV5-mediated Ca2+ reabsorption.


Assuntos
Variação Genética/genética , Cálculos Renais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Humanos , Modelos Moleculares , Oócitos/metabolismo , Canais de Cátion TRPV/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA