Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 145(2): 770-786, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581804

RESUMO

Genome-wide association studies have shown that genetic variants at 2q33.1 are strongly associated with schizophrenia. However, potential causal variants in this locus and their roles in schizophrenia remain unknown. Here, we identified two functional variants (rs796364 and rs281759) that disrupt CTCF, RAD21 and FOXP2 binding at 2q33.1. We systematically investigated the regulatory mechanisms of these two variants with serial experiments, including reporter gene assays and electrophoretic mobility shift assay. Intriguingly, these two single nucleotide polymorphisms physically interacted with TYW5 and showed the most significant associations with TYW5 expression in human brain. Consistently, CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of the two single nucleotide polymorphisms on TYW5 expression. Additionally, expression analysis indicated that TYW5 was significantly upregulated in brains of schizophrenia cases compared with controls, suggesting that rs796364 and rs281759 might confer schizophrenia risk by modulating TYW5 expression. We over-expressed TYW5 in mouse neural stem cells and rat primary neurons to mimic its upregulation in schizophrenia and found significant alterations in the proliferation and differentiation of neural stem cells, as well as dendritic spine density following TYW5 overexpression, indicating its important roles in neurodevelopment and spine morphogenesis. Furthermore, we independently confirmed the association between rs796364 and schizophrenia in a Chinese cohort of 8202 subjects. Finally, transcriptome analysis revealed that TYW5 affected schizophrenia-associated pathways. These lines of evidence consistently revealed that rs796364 and rs281759 might contribute to schizophrenia risk by regulating the expression of TYW5, a gene whose expression dysregulation affects two important schizophrenia pathophysiological processes (i.e. neurodevelopment and dendritic spine formation).


Assuntos
Estudo de Associação Genômica Ampla , Oxigenases de Função Mista/genética , Esquizofrenia , Animais , Povo Asiático/genética , Predisposição Genética para Doença/genética , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Ratos , Esquizofrenia/genética
2.
BMC Med ; 20(1): 169, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35527273

RESUMO

BACKGROUND: Identifying the causal genes at the risk loci and elucidating their roles in schizophrenia (SCZ) pathogenesis remain significant challenges. To explore risk variants associated with gene expression in the human brain and to identify genes whose expression change may contribute to the susceptibility of SCZ, here we report a comprehensive integrative study on SCZ. METHODS: We systematically integrated the genetic associations from a large-scale SCZ GWAS (N = 56,418) and brain expression quantitative trait loci (eQTL) data (N = 175) using a Bayesian statistical framework (Sherlock) and Summary data-based Mendelian Randomization (SMR). We also measured brain structure of 86 first-episode antipsychotic-naive schizophrenia patients and 152 healthy controls with the structural MRI. RESULTS: Both Sherlock (P = 3. 38 × 10-6) and SMR (P = 1. 90 × 10-8) analyses showed that TYW5 mRNA expression was significantly associated with risk of SCZ. Brain-based studies also identified a significant association between TYW5 protein abundance and SCZ. The single-nucleotide polymorphism rs203772 showed significant association with SCZ and the risk allele is associated with higher transcriptional level of TYW5 in the prefrontal cortex. We further found that TYW5 was significantly upregulated in the brain tissues of SCZ cases compared with controls. In addition, TYW5 expression was also significantly higher in neurons induced from pluripotent stem cells of schizophrenia cases compared with controls. Finally, combining analysis of genotyping and MRI data showed that rs203772 was significantly associated with gray matter volume of the right middle frontal gyrus and left precuneus. CONCLUSIONS: We confirmed that TYW5 is a risk gene for SCZ. Our results provide useful information toward a better understanding of the genetic mechanism of TYW5 in risk of SCZ.


Assuntos
Oxigenases de Função Mista , Esquizofrenia , Teorema de Bayes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Oxigenases de Função Mista/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA