Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 75(3): 469-482.e6, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31278054

RESUMO

A significant fraction (∼10%) of cancer cells maintain their telomere length via a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). There are no known molecular, ALT-specific, therapeutic targets. We have identified TSPYL5 (testis-specific Y-encoded-like protein 5) as a PML body component, co-localizing with ALT telomeres and critical for ALT+ cell viability. TSPYL5 was described as an inhibitor of the USP7 deubiquitinase. We report that TSPYL5 prevents the poly-ubiquitination of POT1-a shelterin component-and protects POT1 from proteasomal degradation exclusively in ALT+ cells. USP7 depletion rescued POT1 poly-ubiquitination and loss, suggesting that the deubiquitinase activates POT1 E3 ubiquitin ligase(s). Similarly, PML depletion suppressed POT1 poly-ubiquitination, suggesting an interplay between USP7 and PML to trigger POT1 degradation in TSPYL5-depleted ALT+ cells. We demonstrate that ALT telomeres need to be protected from POT1 degradation in ALT-associated PML bodies and identify TSPYL5 as an ALT+ cancer-specific therapeutic target.


Assuntos
Neoplasias/genética , Proteínas Nucleares/genética , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Peptidase 7 Específica de Ubiquitina/genética , Linhagem Celular , Sobrevivência Celular/genética , Humanos , Neoplasias/patologia , Proteína da Leucemia Promielocítica/genética , Ligação Proteica/genética , Proteólise , Complexo Shelterina , Telômero/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
2.
Oecologia ; 202(1): 29-40, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087699

RESUMO

Early life for animals is often a time of rapid growth and development. In a resource-limited environment, life history theory predicts that there must be trade-offs between resource sinks in ways that optimize future survival and reproductive success. Telomeres have emerged as putative indicators of these early life trade-offs, but there are conflicting accounts as to how developmental traits and conditions impact telomere length and dynamics. For 2 years, we studied the nestlings of a breeding population of barn swallows from day 6 to day 12 of life, measuring various ontogenetic factors to understand to what extent they explain variation in telomere length and dynamics. We unexpectedly found that telomeres lengthened between the two sampling points. Nestlings in large broods had shorter telomeres, but surprisingly, individuals that grew faster from day 6 to day 12 had longer telomeres and more telomere lengthening. Nestlings with higher mass relative to their nestmates on d6 had shorter telomeres, suggesting that the relatively fast growth barn swallows experience early in development is more costly than the relatively slower growth later in development. These effects were only found in the first year of study. Telomere lengthening may be due to the initiation of new hematopoietic cell lines during development or the expression of telomerase early in life. Favorable early life conditions and high parental investment could allow for more growth with little to no cost to telomere length or dynamics.


Assuntos
Andorinhas , Animais , Homeostase do Telômero , Telômero , Reprodução , Encurtamento do Telômero
3.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785504

RESUMO

Alternative reproductive tactics (ARTs) are correlated suites of sexually selected traits that are likely to impose differential physiological costs on different individuals. While moderate activity might be beneficial, animals living in the wild often work at the margins of their resources and performance limits. Individuals using ARTs may have divergent capacities for activity. When pushed beyond their respective capacities, they may experience condition loss, oxidative stress, and molecular damage that must be repaired with limited resources. We used the Australian painted dragon lizard that exhibits color polymorphism as a model to experimentally test the effect of exercise on body condition, growth, reactive oxygen species (ROS) and telomere dynamics - a potential marker of stress and aging and a correlate of longevity. For most males, ROS levels tended to be lower with greater exercise; however, males with yellow throat patches - or bibs - had higher ROS levels than non-bibbed males. At the highest level of exercise, bibbed males exhibited telomere loss, while non-bibbed males gained telomere length; the opposite pattern was observed in the no-exercise controls. Growth was positively related to food intake but negatively correlated with telomere length at the end of the experiment. Body condition was not related to food intake but was positively correlated with increases in telomere length. These results, along with our previous work, suggest that aggressive - territory holding - bibbed males suffer physiological costs that may reduce longevity compared with non-bibbed males with superior postcopulatory traits.


Assuntos
Lagartos , Animais , Austrália , Lagartos/genética , Masculino , Reprodução , Comportamento Sexual Animal , Telômero
4.
Oecologia ; 194(4): 609-620, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33201323

RESUMO

Telomere shortening has been used as an indicator of aging and is believed to accelerate under harsh environmental conditions. This can be attributed to the fact that telomere shortening has often been regarded as non-reversible and negatively impacting fitness. However, studies of laboratory mice indicate that they may be able to repair telomere loss to recover from environmental harshness, as indicated by recent studies in hibernating rodents. We studied seasonal variation in telomere dynamics in African striped mice (Rhabdomys pumilio) living in a highly seasonal environment. In our annual species, individuals born in the moist spring (high food availability) need to survive the harsh dry summer (low food availability) to be able to reproduce in the following spring. We studied the effect of the harsh dry vs. the benign moist season on telomere dynamics. We also tested if telomere length or the rate of change in telomere length over the dry season predicted the probablity of dissapearance from the population at the same time. Male, but not female, stripped mice showed age-related telomere erosion. Telomeres were longer at the beginning of the dry season compared to the rest of the year. Telomeres increased significantly in length during the moist season. Neither telomere length at the onset of the dry season nor telomere loss over the dry season predicted whether or not individuals disappeared. In conclusion, our data suggest that seasonal attrition and restoring of telomeres also occurs in non-hibernating wild rodents living in hot food restricted environments.


Assuntos
Murinae , Telômero , Envelhecimento , Animais , Alimentos , Humanos , Masculino , Camundongos , Murinae/genética , Estações do Ano , Encurtamento do Telômero
5.
Adv Exp Med Biol ; 1258: 21-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32767232

RESUMO

Conventional osteosarcoma (OS) is a high-grade intraosseous malignancy with production of osteoid matrix; however, a deeper dive into the underlying genetics reveals genomic complexity and instability that result in significant tumor heterogeneity. While early karyotyping studies demonstrated aneuploidy with chromosomal complexity and structural rearrangements, further investigations have identified few recurrent genetic alterations with the exception of the tumor suppressors TP53 and RB1. More recent studies utilizing next-generation sequencing (NGS; whole-exome sequencing, WES; and whole-genome sequencing, WGS) reveal a genomic landscape predominantly characterized by somatic copy number alterations rather than point/indel mutations. Despite its genomic complexity, OS has shown variable immune infiltrate and limited immunogenicity. In the current chapter, we review the hallmarks of OS genomics across recent NGS studies and the immune profile of OS including a large institutional cohort of OS patients with recurrent and metastatic disease. Understanding the genomic and immune landscape of OS may provide opportunities for translation in both molecularly targeted therapies and novel immuno-oncology approaches.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Genoma Humano/genética , Genômica , Osteossarcoma/genética , Osteossarcoma/imunologia , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação
6.
Int J Mol Sci ; 20(13)2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31284662

RESUMO

Telomerase, an RNA-dependent DNA polymerase with telomerase reverse transcriptase (TERT) as the catalytic component, is silent due to the tight repression of the TERT gene in most normal human somatic cells, whereas activated only in small subsets of cells, including stem cells, activated lymphocytes, and other highly proliferative cells. In contrast, telomerase activation via TERT induction is widespread in human malignant cells, which is a prerequisite for malignant transformation. It is well established that TERT/telomerase extends telomere length, thereby conferring sustained proliferation capacity to both normal and cancerous cells. The recent evidence has also accumulated that TERT/telomerase may participate in the physiological process and oncogenesis independently of its telomere-lengthening function. For instance, TERT is shown to interact with chromatin remodeling factors and to regulate DNA methylation, through which multiple cellular functions are attained. In the present review article, we summarize the non-canonical functions of TERT with a special emphasis on its cross-talk with epigenetics: How TERT contributes to epigenetic alterations in physiological processes and cancer, and how the aberrant epigenetics in turn facilitate TERT expression and function, eventually promoting cancer either initiation or progression or both. Finally, we briefly discuss clinical implications of the TERT-related methylation.


Assuntos
Epigênese Genética , Telomerase/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA/genética , Humanos , Modelos Genéticos , Telômero/metabolismo
7.
Circ Res ; 113(10): 1169-79, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24044948

RESUMO

RATIONALE: Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. OBJECTIVE: Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. METHODS AND RESULTS: C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. CONCLUSIONS: Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.


Assuntos
Proliferação de Células , Miocárdio/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Rejuvenescimento/fisiologia , Células-Tronco/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Masculino , Pessoa de Meia-Idade , Homeostase do Telômero/fisiologia
8.
FEBS Lett ; 596(1): 42-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817067

RESUMO

Mutations in many genes that control the expression, the function, or the stability of telomerase cause telomere biology disorders (TBDs), such as dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia. Mutations in a subset of the genes associated with TBDs cause reductions of the telomerase RNA moiety hTR, thus limiting telomerase activity. We have recently found that loss of the trimethylguanosine synthase TGS1 increases both hTR abundance and telomerase activity and leads to telomere elongation. Here, we show that treatment with the S-adenosylmethionine analog sinefungin inhibits TGS1 activity, increases the hTR levels, and promotes telomere lengthening in different cell types. Our results hold promise for restoring telomere length in stem and progenitor cells from TBD patients with reduced hTR levels.


Assuntos
Metiltransferases
9.
PeerJ ; 5: e3265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462056

RESUMO

Telomere shortening has emerged as an important biomarker of aging. Longitudinal studies consistently find that, although telomere length shortens over time on average, there is a subset of individuals for whom telomere length is observed to increase. This apparent lengthening could either be a genuine biological phenomenon, or simply due to measurement and sampling error. Simons, Stulp & Nakagawa (2014) recently proposed a statistical test for detecting when the amount of apparent lengthening in a dataset exceeds that which should be expected due to error, and thus indicating that genuine elongation may be operative in some individuals. However, the test is based on a restrictive assumption, namely that each individual's true rate of telomere change is constant over time. It is not currently known whether this assumption is true. Here we show, using simulated datasets, that with perfect measurement and large sample size, the test has high power to detect true lengthening as long as the true rate of change is either constant, or moderately stable, over time. If the true rate of change varies randomly from year to year, the test systematically returns type-II errors (false negatives; that is, failures to detect lengthening even when a substantial fraction of the population truly lengthens each year). We also consider the impact of measurement error. Using estimates of the magnitude of annual attrition and of measurement error derived from the human telomere literature, we show that power of the test is likely to be low in several empirically-realistic scenarios, even in large samples. Thus, whilst a significant result of the proposed test is likely to indicate that true lengthening is present in a data set, type-II errors are a likely outcome, either if measurement error is substantial, and/or the true rate of telomere change varies substantially over time within individuals.

10.
Aging Cell ; 16(2): 312-319, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27943596

RESUMO

Longitudinal studies of human leucocyte telomere length often report a percentage of individuals whose telomeres appear to lengthen. However, based on theoretical considerations and empirical data, Steenstrup et al. (Nucleic Acids Research, 2013, vol 41(13): e131) concluded that this lengthening is unlikely to be a real biological phenomenon and is more likely to be an artefact of measurement error. We dispute the logic underlying this claim. We argue that Steenstrup et al.'s analysis is incomplete because it failed to compare predictions derived from assuming a scenario with no true telomere lengthening with alternative scenarios in which true lengthening occurs. To address this deficit, we built a computational model of telomere dynamics that allowed us to compare the predicted percentage of observed telomere length gainers given differing assumptions about measurement error and the true underling dynamics. We modelled a set of scenarios, all assuming measurement error, but both with and without true telomere lengthening. We found a range of scenarios assuming some true telomere lengthening that yielded either similar or better quantitative fits to the empirical data on the percentage of individuals showing apparent telomere lengthening. We conclude that although measurement error contributes to the prevalence of apparent telomere lengthening, Steenstrup et al.'s conclusion was too strong, and current data do not allow us to reject the hypothesis that true telomere lengthening is a real biological phenomenon in epidemiological studies. Our analyses highlight the need for process-level models in the analysis of telomere dynamics.


Assuntos
Homeostase do Telômero , Simulação por Computador , Modelos Biológicos
11.
Mol Cytogenet ; 9: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858775

RESUMO

Longer telomeres in the somatic cells of an individual have been regarded as a marker of youth and biological fitness within a population. Yet, several research groups have reported the surprising findings of longer telomeres in the germ cells of older men, which translated into longer leukocyte telomere length in their offspring. Although all these studies were purely cross-sectional, a longitudinal trend in the aging testes of individual males was taken for granted. Recently, a high-profile study reported a negative birth-cohort effect on leukocyte mean telomere length in human populations, namely the progressive loss of telomeric sequence between healthy human generations. This is what I based my theory of telomere-driven macroevolution on, 12 years ago. On the basis of published data on telomere length inheritance, I identified the source of human intergenerational telomere erosion in the female germline. Accordingly, because of the resulting birth-cohort effect, there is no need for any paradoxical telomere lengthening in older men's gonads to interpret the old-father-long-telomered-offspring data.

12.
Worm ; 2(1): e21073, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058854

RESUMO

In most eukaryotic organisms with a linear genome, the telomerase complex is essential for telomere maintenance and, thus, for genomic integrity. Proper telomerase function in stem and germ cell populations counteracts replication-dependent telomere shortening. On the other hand, repression of telomerase expression in most somatic tissues limits the proliferative potential of these cells through the induction of a permanent cell cycle arrest termed senescence upon critical telomere erosion. Thus, senescence, induced by telomere shortening and subsequent DNA damage signaling, is an essential tumor suppressive mechanism, emphasized by the fact that repression of telomerase is lost in about 90% of cancers, endowing them with unlimited proliferative potential. In 10% of cancers telomeres are maintained using the recombination-based alternative mechanism of telomere lengthening (ALT). To date, ALT and ALT-like mechanisms have only been described in the context of individual cells such as cancer cells and yeast. Now, several "survivor" strains of the nematode Caenorhabditis elegans have been generated that can propagate despite mutations of the telomerase gene. These nematode strains represent the first multi-cellular organism with canonical telomerase that can survive in the absence of a functional telomerase pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA