Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 55, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886737

RESUMO

BACKGROUND: Schizophrenia (SZ), a psychiatric disorder for which there is no precise diagnosis, has had a serious impact on the quality of human life and social activities for many years. Therefore, an advanced approach for accurate treatment is required. NEW METHOD: In this study, we provide a classification approach for SZ patients based on a spatial-temporal residual graph convolutional neural network (STRGCN). The model primarily collects spatial frequency features and temporal frequency features by spatial graph convolution and single-channel temporal convolution, respectively, and blends them both for the classification learning, in contrast to traditional approaches that only evaluate temporal frequency information in EEG and disregard spatial frequency features across brain regions. RESULTS: We conducted extensive experiments on the publicly available dataset Zenodo and our own collected dataset. The classification accuracy of the two datasets on our proposed method reached 96.32% and 85.44%, respectively. In the experiment, the dataset using delta has the best classification performance in the sub-bands. COMPARISON WITH EXISTING METHODS: Other methods mainly rely on deep learning models dominated by convolutional neural networks and long and short time memory networks, lacking exploration of the functional connections between channels. In contrast, the present method can treat the EEG signal as a graph and integrate and analyze the temporal frequency and spatial frequency features in the EEG signal. CONCLUSION: We provide an approach to not only performs better than other classic machine learning and deep learning algorithms on the dataset we used in diagnosing schizophrenia, but also understand the effects of schizophrenia on brain network features.


Assuntos
Eletroencefalografia , Redes Neurais de Computação , Esquizofrenia , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Automação , Diagnóstico por Computador/métodos , Análise Espaço-Temporal
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353906

RESUMO

This paper offers a theory for the origin of direction selectivity (DS) in the macaque primary visual cortex, V1. DS is essential for the perception of motion and control of pursuit eye movements. In the macaque visual pathway, neurons with DS first appear in V1, in the Simple cell population of the Magnocellular input layer 4Cα. The lateral geniculate nucleus (LGN) cells that project to these cortical neurons, however, are not direction selective. We hypothesize that DS is initiated in feed-forward LGN input, in the summed responses of LGN cells afferent to a cortical cell, and it is achieved through the interplay of 1) different visual response dynamics of ON and OFF LGN cells and 2) the wiring of ON and OFF LGN neurons to cortex. We identify specific temporal differences in the ON/OFF pathways that, together with item 2, produce distinct response time courses in separated subregions; analysis and simulations confirm the efficacy of the mechanisms proposed. To constrain the theory, we present data on Simple cells in layer 4Cα in response to drifting gratings. About half of the cells were found to have high DS, and the DS was broadband in spatial and temporal frequency (SF and TF). The proposed theory includes a complete analysis of how stimulus features such as SF and TF interact with ON/OFF dynamics and LGN-to-cortex wiring to determine the preferred direction and magnitude of DS.


Assuntos
Corpos Geniculados/citologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Animais , Corpos Geniculados/fisiologia , Macaca fascicularis , Masculino , Modelos Biológicos , Neurônios/fisiologia , Córtex Visual Primário/citologia , Tempo de Reação
3.
J Neurosci ; 42(19): 3965-3974, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35396325

RESUMO

Steady-state visually evoked potentials (SSVEPs) are widely used to index top-down cognitive processing in human electroencephalogram (EEG) studies. Typically, two stimuli flickering at different temporal frequencies (TFs) are presented, each producing a distinct response in the EEG at its flicker frequency. However, how SSVEP responses in EEGs are modulated in the presence of a competing flickering stimulus just because of sensory interactions is not well understood. We have previously shown in local field potentials (LFPs) recorded from awake monkeys that when two overlapping full-screen gratings are counterphased at different TFs, there is an asymmetric SSVEP response suppression, with greater suppression from lower TFs, which further depends on the relative orientations of the gratings (stronger suppression and asymmetry for parallel compared with orthogonal gratings). Here, we first confirmed these effects in both male and female human EEG recordings. Then, we mapped the response suppression of one stimulus (target) by a competing stimulus (mask) over a much wider range than the previous study. Surprisingly, we found that the suppression was not stronger at low frequencies in general, but systematically varied depending on the target TF, indicating local interactions between the two competing stimuli. These results were confirmed in both human EEG and monkey LFP and electrocorticogram (ECoG) data. Our results show that sensory interactions between multiple SSVEPs are more complex than shown previously and are influenced by both local and global factors, underscoring the need to cautiously interpret the results of studies involving SSVEP paradigms.SIGNIFICANCE STATEMENT Steady-state visually evoked potentials (SSVEPs) are extensively used in human cognitive studies and brain-computer interfacing applications where multiple stimuli flickering at distinct frequencies are concurrently presented in the visual field. We recently characterized interactions between competing flickering stimuli in animal recordings and found that stimuli flickering slowly produce larger suppression. Here, we confirmed these in human EEGs, and further characterized the interactions by using a much wider range of target and competing (mask) frequencies in both human EEGs and invasive animal recordings. These revealed a new "local" component, whereby the suppression increased when competing stimuli flickered at nearby frequencies. Our results highlight the complexity of sensory interactions among multiple SSVEPs and underscore the need to cautiously interpret studies involving SSVEP paradigms.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Potenciais Evocados , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos
4.
J Cardiovasc Electrophysiol ; 34(3): 536-545, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598424

RESUMO

INSTRUCTION: We hypothesized that real-time simultaneous amplitude frequency electrogram transform (SAFE-T) during sinus rhythm (SR) is able to identify and characterize the drivers of atrial fibrillation (AF) in nonparoxysmal (NP) AF. METHODS: Twenty-one NPAF patients (85.71% males, mean age 52 years old) underwent substrate mapping during SR (SAFE-T and voltage) and during AF (complex fractionated atrial electrograms [CFAE] and similarity index [SI]). After pulmonary veins isolation, extensive substrate ablation was performed with the endpoint of procedural termination or elimination of all SI sites (>63% similarities). Sites with procedural termination and non-termination sites were tagged for postablation SR analysis using SAFE-T. RESULTS: In 74 CFAE sites identified (average of 3 ± 2 sites per person), 28 (37.84%) were identified as termination sites demonstrating a high SI compared with the non-termination sites (80.11 ± 9.57% vs. 45.96 ± 13.38%, p < .001) during AF. During SR, these termination sites have high SAFE-T values and harbor a highly resonant, localized, repetitive high frequency components superimposed in the low frequency components compared with non-termination sites (5.70 ± 3.04 vs. 1.49 ± 1.66 Hz·mV, p < .001). In the multivariate analysis, the termination sites have higher SAFE-T and SI value (p < .001). CONCLUSION: AF procedural termination sites harbored signal characteristics of repetitive, high frequency component of individualized electrogram during SR, which can be masked by the low frequency fractionated electrogram and are difficult to see from the bipolar electrogram. Thus, SAFE-T mapping is feasible in identifying and characterizing sites of AF drivers.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Fibrilação Atrial/cirurgia , Técnicas Eletrofisiológicas Cardíacas , Veias Pulmonares/cirurgia , Análise Multivariada
5.
Int J Neurosci ; : 1-10, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812033

RESUMO

OBJECTIVE: Visual evoked potential recording has reported ambiguous results among migraineurs, thus the present study explored the association of check-size and reversal rates on the latency and amplitude of pattern reversal VEP among migraineurs. METHOD AND MATERIAL: Monocular VEP responses for both eyes were recorded in 133 migraineurs and 111 controls. Checkerboard pattern with phase reversal frequency of 0.5, 1, 2 and 4 Hz and check-size of 16 × 16, 32 × 32, 64 × 64 and 128 × 128, i.e. spatial frequency of 0.475, 1.029, 2.056 and 4.112 cycle per degree (cpd) were used to record 100 responses each. Three-minutes gap was given after change of reversal frequency to a higher rate for next cycle of 4 check-size records. RESULT: A linear increase in latencies was observed with decreasing check-size in both groups, but migraineurs had significantly higher latencies at a given reversal rate. Amplitudes A1 and A2 were higher among migraineurs and amplitude A2 showed an inverted 'U' shaped trend with maximum amplitude at 32 × 32 check size (1.029 cpd) in both groups, with an exaggerated response among migraineurs. Check-size 32 × 32 i.e. spatial frequency of 1.029 behaves differently than other larger or smaller check-sizes. CONCLUSION: Variable VEP response for different visual stimuli may be due to differential activation of respective retinocortical pathways and cortical areas. The highest amplitude at modest check-size suggests a contributory role of foveal-parafoveal fibres in migraineurs. Exaggerated physiological response to visual stimuli may be responsible for higher amplitudes and prolonged latencies among migraineurs.


Exaggerated physiological VEP response as higher amplitudes and prolonged latencies, among migraineurs may be due to differential activation of respective retinocortical pathways and cortical areas.

6.
Sensors (Basel) ; 22(6)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336315

RESUMO

Convolutional neural networks (CNNs) have significantly promoted the development of speaker verification (SV) systems because of their powerful deep feature learning capability. In CNN-based SV systems, utterance-level aggregation is an important component, and it compresses the frame-level features generated by the CNN frontend into an utterance-level representation. However, most of the existing aggregation methods aggregate the extracted features across time and cannot capture the speaker-dependent information contained in the frequency domain. To handle this problem, this paper proposes a novel attention-based frequency aggregation method, which focuses on the key frequency bands that provide more information for utterance-level representation. Meanwhile, two more effective temporal-frequency aggregation methods are proposed in combination with the existing temporal aggregation methods. The two proposed methods can capture the speaker-dependent information contained in both the time domain and frequency domain of frame-level features, thus improving the discriminability of speaker embedding. Besides, a powerful CNN-based SV system is developed and evaluated on the TIMIT and Voxceleb datasets. The experimental results indicate that the CNN-based SV system using the temporal-frequency aggregation method achieves a superior equal error rate of 5.96% on Voxceleb compared with the state-of-the-art baseline models.


Assuntos
Redes Neurais de Computação
7.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146166

RESUMO

The complexity of polyphonic sounds imposes numerous challenges on their classification. Especially in real life, polyphonic sound events have discontinuity and unstable time-frequency variations. Traditional single acoustic features cannot characterize the key feature information of the polyphonic sound event, and this deficiency results in poor model classification performance. In this paper, we propose a convolutional recurrent neural network model based on the temporal-frequency (TF) attention mechanism and feature space (FS) attention mechanism (TFFS-CRNN). The TFFS-CRNN model aggregates Log-Mel spectrograms and MFCCs feature as inputs, which contains the TF-attention module, the convolutional recurrent neural network (CRNN) module, the FS-attention module and the bidirectional gated recurrent unit (BGRU) module. In polyphonic sound events detection (SED), the TF-attention module can capture the critical temporal-frequency features more capably. The FS-attention module assigns different dynamically learnable weights to different dimensions of features. The TFFS-CRNN model improves the characterization of features for key feature information in polyphonic SED. By using two attention modules, the model can focus on semantically relevant time frames, key frequency bands, and important feature spaces. Finally, the BGRU module learns contextual information. The experiments were conducted on the DCASE 2016 Task3 dataset and the DCASE 2017 Task3 dataset. Experimental results show that the F1-score of the TFFS-CRNN model improved 12.4% and 25.2% compared with winning system models in DCASE challenge; the ER is reduced by 0.41 and 0.37 as well. The proposed TFFS-CRNN model algorithm has better classification performance and lower ER in polyphonic SED.


Assuntos
Acústica , Redes Neurais de Computação , Algoritmos , Audição , Som
8.
Doc Ophthalmol ; 143(2): 207-220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33886039

RESUMO

PURPOSE: To study the effect of stimulus size and temporal frequency on the relative contribution of luminance and L-/M-cone opponent signals in the ERG. METHODS: In four healthy, color normal subjects, ERG responses to heterochromatic stimuli with sinusoidal, counter-phase modulation of red and green LEDs were measured. By inverse variation of red and green contrasts, we varied luminance contrast while keeping L-/M-cone opponent chromatic contrast constant. The first harmonic components in the full field ERGs are independent of stimulus contrast at 12 Hz, while responses to 36 Hz stimuli vary, reaching a minimum close to isoluminance. It was assumed that ERG responses reflect L-/M-cone opponency at 12 Hz and luminance at 36 Hz. In this study, we modeled the influence of temporal frequency on the relative contribution of these mechanisms at intermediate frequencies, measured the influence of stimulus size on model parameters, and analyzed the second harmonic component at 12 Hz. RESULTS: The responses at all frequencies and stimulus sizes could be described by a linear vector addition of luminance and L-/M-cone opponent reflecting ERGs. The contribution of the luminance mechanism increased with increasing temporal frequency and with increasing stimulus size, whereas the gain of the L-/M-cone opponent mechanism was independent of stimulus size and was larger at lower temporal frequencies. Thus, the luminance mechanism dominated at lower temporal frequencies with large stimuli. At 12 Hz, the second harmonic component reflected the luminance mechanism. CONCLUSIONS: The ERGs to heterochromatic stimuli can be fully described in terms of linear combinations of responses in the (magnocellular) luminance and the (parvocellular) L-/M-opponent retino-geniculate pathways. The non-invasive study of these pathways in human subjects may have implications for basic research and for clinical research.


Assuntos
Eletrorretinografia , Células Fotorreceptoras Retinianas Cones , Humanos , Estimulação Luminosa , Regulador Transcricional ERG
9.
Sensors (Basel) ; 21(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34450942

RESUMO

In the important and challenging field of environmental sound classification (ESC), a crucial and even decisive factor is the feature representation ability, which can directly affect the accuracy of classification. Therefore, the classification performance often depends to a large extent on whether the effective representative features can be extracted from the environmental sound. In this paper, we firstly propose a sub-spectrogram segmentation with score level fusion based ESC classification framework, and we adopt the proposed convolutional recurrent neural network (CRNN) for improving the classification accuracy. By evaluating numerous truncation schemes, we numerically figure out the optimal number of sub-spectrograms and the corresponding band ranges, and, on this basis, we propose a joint attention mechanism with temporal and frequency attention mechanisms and use the global attention mechanism when generating the attention map. Finally, the numerical results show that the two frameworks we proposed can achieve 82.1% and 86.4% classification accuracy on the public environmental sound dataset ESC-50, respectively, which is equivalent to more than 13.5% improvement over the traditional baseline scheme.


Assuntos
Redes Neurais de Computação , Som
10.
Exp Eye Res ; 198: 108126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717338

RESUMO

Chicks respond to two signals from longitudinal chromatic aberration (LCA): a wavelength defocus signal and a chromatic signal. Wavelength defocus predicts reduced axial eye growth in monochromatic short-wavelength light, compared to monochromatic long-wavelength light. Wavelength defocus may also influence growth in broadband light. In contrast, a chromatic signal predicts increased growth when short-wavelength contrast > long-wavelength contrast, but only when light is broadband. We aimed to investigate the influence of blue light, temporal frequency and contrast on these signals under broadband conditions. Starting at 12 to 13 days-old, 587 chicks were exposed to the experimental illumination conditions for three days for 8h/day and spent the remainder of their day in the dark. The stimuli were flickering lights, with a temporal frequency of 0.2 or 10 Hz, low (30%) or high contrast (80%), and a variety of ratios of cone contrast simulating the effects of defocus with LCA. There were two color conditions, with blue contrast (bPlus) and without (bMinus). Stimuli in the "bPlus" condition varied the amounts of long- (L), middle- (M_) and double (D-) cone contrast, relative to short- (S-) and (UV-) cone contrast, to simulate defocus. Stimuli in the "bMinus" condition only varied the relative modulations of the L + D vs. M cones. In all cases, the average of the stimuli was white, with an illuminance of 777 lux, with cone contrast created through temporal modulation. A Lenstar LS 900 and a Hartinger refractometer were used to measure ocular components and refraction. Wavelength defocus signals with relatively high S-cone contrast resulted in reduced axial growth, and more hyperopic refractions, under low-frequency conditions (p = 0.002), in response to the myopic defocus of blue light. Chromatic signals with relatively high S-cone contrast resulted in increased axial growth and more myopic refractions, under high frequency, low contrast, conditions (p < 0.001). We conclude that the chromatic signals from LCA are dependent on the temporal frequency, phase, and relative contrast of S-cone temporal modulation, and recommend broadband spectral and temporal environments, such as the outdoor environment, to optimize the signals-for-defocus in chick.


Assuntos
Emetropia/fisiologia , Miopia/metabolismo , Refração Ocular/fisiologia , Animais , Galinhas , Modelos Animais de Doenças , Miopia/fisiopatologia , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones
11.
Exp Brain Res ; 238(1): 51-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31781821

RESUMO

Deficits in the ability to encode small differences in contrast between adjacent parts of an image (contrast sensitivity) are well documented in schizophrenic patients. In the present study, we sought to determine whether contrast sensitivity deficits reported in schizophrenic patients are also evident in those who exhibit high schizotypy scores in a typical (i.e., non-schizophrenic) population. Using the O-Life Questionnaire, we determined the effects of schizotypy on spatial (0.5, 2 and 8 c/deg) and spatiotemporal (0.5 and 8 c/deg at 0.5 and 8 Hz) contrast sensitivity in 73 young (18-26 years), majority female (n = 68) participants. We found differences in contrast sensitivity that were spatial, spatiotemporal and O-Life subscale specific. Spatial contrast sensitivity was significantly lower in high, compared to low schizotypes at low spatial frequencies (0.5 c/deg) in those who scored highly on the Unusual Experiences and Cognitive Disorganisation O-Life subscales. For moving stimuli, individuals with high scores on the Unusual Experiences subscale exhibited lower spatiotemporal contrast sensitivity for 0.5 and 8 c/deg patterns drifting at 8 Hz. Although the effects reported here were relatively small, this is the first report of reduced contrast sensitivity in schizotypy.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Transtorno da Personalidade Esquizotípica/fisiopatologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Neuroimage ; 197: 13-23, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31015027

RESUMO

Studies of visual temporal frequency preference typically examine frequencies under 20 Hz and measure local activity to evaluate the sensitivity of different cortical areas to variations in temporal frequencies. Most of these studies have not attempted to map preferred temporal frequency within and across visual areas, nor have they explored in detail, stimuli at gamma frequency, which recent research suggests may have potential clinical utility. In this study, we address this gap by using functional magnetic resonance imaging (fMRI) to measure response to flickering visual stimuli varying in frequency from 1 to 40 Hz. We apply stimulation in both a block design to examine task response and a steady-state design to examine functional connectivity. We observed distinct activation patterns between 1 Hz and 40 Hz stimuli. We also found that the correlation between medial thalamus and visual cortex was modulated by the temporal frequency. The modulation functions and tuned frequencies are different for the visual activity and thalamo-visual correlations. Using both fMRI activity and connectivity measurements, we show evidence for a temporal frequency specific organization across the human visual system.


Assuntos
Tálamo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Fatores de Tempo , Vias Visuais/fisiologia , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 113(4): 886-91, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504205

RESUMO

Following Martin [Martin PS (1973) Science 179:969-974], we propose the hypothesis that the timing of human arrival to the New World can be assessed by examining the ecological impacts of a small population of people on extinct Pleistocene megafauna. To that end, we compiled lists of direct radiocarbon dates on paleontological specimens of extinct genera from North and South America with the expectation that the initial decline of extinct megafauna should correspond in time with the initial evidence for human colonization and that those declines should occur first in eastern Beringia, next in the contiguous United States, and last in South America. Analyses of spacings and frequency distributions of radiocarbon dates for each region support the idea that the extinction event first commenced in Beringia, roughly 13,300-15,000 BP. For the United States and South America, extinctions commenced considerably later but were closely spaced in time. For the contiguous United States, extinction began at ca. 12,900-13,200 BP, and at ca. 12,600-13,900 BP in South America. For areas south of Beringia, these estimates correspond well with the first significant evidence for human presence and are consistent with the predictions of the overkill hypothesis.


Assuntos
Extinção Biológica , Migração Humana/história , Mamíferos , Modelos Biológicos , Datação Radiométrica , Animais , Arqueologia/métodos , Tamanho Corporal , Ecossistema , Fósseis , História Antiga , Atividades Humanas , Humanos , América do Norte , Paleontologia/métodos , América do Sul
14.
Proc Biol Sci ; 285(1879)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29794039

RESUMO

The human visual system represents summary statistical information (e.g. average) along many visual dimensions efficiently. While studies have indicated that approximately the square root of the number of items in a set are effectively integrated through this ensemble coding, how those samples are determined is still unknown. Here, we report that salient items are preferentially weighted over the other less salient items, by demonstrating that the perceived means of spatial (i.e. size) and temporal (i.e. flickering temporal frequency (TF)) features of the group of items are positively biased as the number of items in the group increases. This illusory 'amplification effect' was not the product of decision bias but of perceptual bias. Moreover, our visual search experiments with similar stimuli suggested that this amplification effect was due to attraction of visual attention to the salient items (i.e. large or high TF items). These results support the idea that summary statistical information is extracted from sets with an implicit preferential weighting towards salient items. Our study suggests that this saliency-based weighting may reflect a more optimal and efficient integration strategy for the extraction of spatio-temporal statistical information from the environment, and may thus be a basic principle of ensemble coding.


Assuntos
Atenção/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção de Tamanho/fisiologia , Humanos , Percepção Visual
15.
Eur J Neurosci ; 45(11): 1368-1378, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28391639

RESUMO

The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.


Assuntos
Visão de Cores , Corpos Geniculados/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Campos Visuais , Animais , Gatos , Feminino , Corpos Geniculados/citologia , Masculino , Tempo de Reação , Vias Visuais/citologia , Vias Visuais/fisiologia
16.
Eur J Neurosci ; 44(8): 2635-2645, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27529598

RESUMO

The visual system demonstrates significant differences in information processing abilities between the central and peripheral parts of the visual field. Optical imaging based on intrinsic signals was used to investigate the difference in stimulus spatial and temporal frequency interactions related to receptive field eccentricity in the cat area 18. Changing either the spatial or the temporal frequency of grating stimuli had a significant impact on responses in the cortical areas corresponding to the centre of the visual field and more peripheral parts at 10 degrees eccentricity. The cortical region corresponding to the centre of the gaze was tuned to 0.4 cycles per degree (c/deg) for spatial frequency and 2 Hz for temporal frequency. In contrast, the cortical region corresponding to the periphery of the visual field was tuned to a lower spatial frequency of 0.15 c/deg and a higher temporal frequency of 4 Hz. Interestingly, when we simultaneously changed both the spatial frequency and the temporal frequency of the grating stimuli, the responses were significantly different from those estimated with an assumption of independence between the spatial and temporal frequency in the cortical region corresponding to the periphery of the visual field. However, in the cortical area corresponding to the centre of the gaze, spatial frequency showed significant independence from temporal frequency. These properties support the notion of relative specialization of visual information processing for peripheral representations in cortical areas.


Assuntos
Neurônios/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Mapeamento Encefálico , Gatos , Orientação/fisiologia , Estimulação Luminosa/métodos
17.
Biol Lett ; 12(2): 20150823, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26864782

RESUMO

Palaeodemographic studies of animals using frequency distributions of radiocarbon dates are increasingly used in studies of Quaternary extinction but are complicated by taphonomic bias, or the loss of material through time. Current taphonomic models are based on the temporal frequency distributions of sediments, but bone is potentially lost at greater rates because not all sedimentary contexts preserve bone. We test the hypotheses that (i) the loss of bone over time is greater than that of sediment and (ii) this rate of loss varies geographically at large scales. We compiled radiocarbon dates on Pleistocene-aged bone from eastern Beringia (EB), the contiguous United States (CUSA) and South America (SA), from which we developed models of taphonomic loss. We find that bone is lost at greater rates than terrestrial sediment in general, but only for CUSA and SA. Bone in EB is lost at approximately the same rate as terrestrial sediments, which demonstrates the excellent preservation environments of arctic regions, presumably due to preservative effects of permafrost. These differences between bone and sediment preservation as well as between arctic and non-arctic regions should be taken into account by any research addressing past faunal population dynamics based on temporal frequency distributions.


Assuntos
Osso e Ossos , Meio Ambiente , Fósseis , Vertebrados , Alaska , Animais , Regiões Árticas , Geologia , América do Sul , Clima Tropical , Estados Unidos
18.
J Vis ; 15(1): 15.1.25, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25624464

RESUMO

Whereas early visual processing has been considered primarily retinotopic, recent studies have revealed significant contributions of nonretinotopic processing to the human perception of fundamental visual features. For adult vision, it has been shown that information about color, shape, and size is nonretinotipically integrated along the motion trajectory, which could bring about clear and unblurred perception of a moving object. Since this nonretinotopic processing presumably includes tight and elaborated cooperation among functional cortical modules for different visual attributes, how this processing matures in the course of brain development is an important unexplored question. Here we show that the nonretinotopic integration of color signals is fully developed in infants at five months of age. Using preferential looking, we found significantly better temporal segregation of colors for moving patterns than for flickering patterns, even when the retinal color alternation rate was the same. This effect could be ascribed to the integration of color signals along a motion trajectory. Furthermore, the infants' color segmentation performance was comparable to that of human adults. Given that both the motion processing and color vision of 5-month-old infants are still under development, our findings suggest that nonretinotopic color processing develops concurrently with basic color and motion processing. Our findings not only support the notion of an early presence of cross-modal interactions in the brain, but also indicate the early development of a purposive cross-module interaction for elegant visual computation.


Assuntos
Visão de Cores/fisiologia , Fusão Flicker/fisiologia , Percepção de Movimento/fisiologia , Retina/fisiologia , Movimentos Oculares/fisiologia , Feminino , Humanos , Lactente , Masculino
19.
Eur J Neurosci ; 40(4): 2652-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888415

RESUMO

Aged humans exhibit severe deficits in visual motion perception and contrast sensitivity under various levels of spatial and temporal modulation. Previous studies indicated that many of these deficits are probably mediated by the neural degradation of the central visual system. To clarify the neuronal response mechanisms underlying the visual degradation during aging, we examined the spatial and temporal frequency tuning properties of neurons from anesthetised and paralysed aged monkeys at the middle temporal area (area MT), which is downstream of the primary visual cortex in the visual processing pathway and thought to be critical for motion perception. We found that the preferred spatial and temporal frequencies, spatial resolution and high temporal frequency cutoff of area MT neurons were reduced in aged monkeys, and were accompanied by the broadened tuning width of spatial frequency, elevated spontaneous activity, and decreased signal-to-noise ratio. These results showed that, for neurons in area MT, aging significantly changed both the spatial and temporal frequency response tuning properties. Such evidence provides new insight into the changes occurring at the electrophysiological level that may be related to the aging-related visual deficits, especially in processing spatial and temporal information.


Assuntos
Envelhecimento/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Animais , Macaca mulatta , Masculino , Estimulação Luminosa
20.
Psychol Sci ; 25(2): 555-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390826

RESUMO

People perceive spatial form and temporal frequency through touch. Although distinct somatosensory neurons represent spatial and temporal information, these neural populations are intermixed throughout the somatosensory system. Here, we show that spatial and temporal touch can be dissociated and separately enhanced via cortical pathways that are normally associated with vision and audition. In Experiments 1 and 2, we found that anodal transcranial direct current stimulation (tDCS) applied over visual cortex, but not auditory cortex, enhances tactile perception of spatial orientation. In Experiments 3 and 4, we found that anodal tDCS over auditory cortex, but not visual cortex, enhances tactile perception of temporal frequency. This double dissociation reveals separate cortical pathways that selectively support spatial and temporal channels. These results bolster the emerging view that sensory areas process multiple modalities and suggest that supramodal domains may be more fundamental to cortical organization.


Assuntos
Córtex Auditivo/fisiologia , Vias Neurais/fisiologia , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia , Percepção do Tato/fisiologia , Córtex Visual/fisiologia , Adulto , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA