Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547062

RESUMO

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Assuntos
Proteínas de Membrana , Dinâmica Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mitocôndrias/genética , DNA Mitocondrial , Controle de Qualidade , Dinaminas/genética
2.
Clin Oral Investig ; 28(1): 5, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123821

RESUMO

INTRODUCTION: The present study evaluated the biomechanical characteristics of cyanoacrylate-based tissue adhesive (TA) compared to surgical sutures in coronally advanced flap (CAF) procedures using an ex-vivo model. MATERIAL AND METHODS: Thirty-six half-pig mandibles were divided into three groups, n=12 each: (I) CAF fixed with sutures (sling and tag suture technique), (II) CAF fixed with TA, and (III) CAF fixed with sutures and TA. At mandibular premolars, gingival recession defects extending 3 mm apical to the cemento-enamel junction (CEJ) were created. CAF procedures were performed using a split-full-split approach, with coronal advancement of the flap to 1 mm above the marked CEJ and stabilization according to the respective groups I-III. Marginal flap stability against pull-of forces (maximum tensile force) was measured with a universal material testing machine until the CEJ became visible. RESULTS: The comparison between groups I-III demonstrated a significantly increased maximum tensile force for the TA (II) compared to the suture group (I) (p<0.001). A significantly increased maximum tensile force was found for the suture and TA (III) compared to the suture group (I) (p<0.001). There was also a significantly increased maximum tensile force in the suture and TA (III) compared to the TA group (II) (p<0.001). CONCLUSION: The results suggest that cyanoacrylate-based TA can increase marginal flap stability compared to sutures in CAF procedures. CLINICAL RELEVANCE: Cyanoacrylate-based TA can be considered a useful and valuable adjunct to conventional suturing techniques in periodontal plastic surgery, especially in cases where high flap stability is required. The results of this ex-vivo study can only be transferred to the clinical situation with limitations. Clinical long-term follow-up data must be generated.


Assuntos
Retração Gengival , Adesivos Teciduais , Animais , Suínos , Gengiva/cirurgia , Cianoacrilatos , Resultado do Tratamento , Raiz Dentária/cirurgia , Retração Gengival/cirurgia , Suturas
3.
J Biol Chem ; 296: 100776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33992645

RESUMO

The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD55/química , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química
4.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161748

RESUMO

The free cantilever method (FCM) is a bridge construction method in which the left and right segments are joined in sequence from a pier without using a bottom strut. To support the imbalance of the left and right moments during construction, temporary steel rods, upon which tensile force is applied that cannot be managed after construction, are embedded in the pier. If there is an excessive loss of tensile force applied to the steel rods, the segments can collapse owing to the unbalanced moment, which may cause personal and property damage. Therefore, it is essential to monitor the tensile force in the temporary steel rods to prevent such accidents. In this study, a tensile force estimation method for the temporary steel rods of an FCM bridge using embedded Elasto-Magnetic (EM) sensors was proposed. After the tensile force was applied to the steel rods, the change in tensile force was monitored according to the changing area of a magnetic hysteresis curve, as measured by the embedded EM sensors. To verify the field applicability of the proposed method, the EM sensors were installed in an FCM bridge pier under construction. The three sensors were installed in conjunction with a sheath tube, and the magnetic hysteresis curve was measured over nine months. Temperature data from the measurement period were used to compensate for the error due to daily temperature fluctuations. The estimated tensile force was consistent with an error range of ±4% when compared with the reference value measured by the load cell. Based on the results of this experiment, the applicability of the proposed method was demonstrated.


Assuntos
Magnetismo , Aço , Fenômenos Magnéticos , Fenômenos Físicos , Resistência à Tração
5.
Plant Cell Rep ; 40(2): 361-374, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392730

RESUMO

KEY MESSAGE: MANNANASE7 gene in Brassica napus L. encodes a hemicellulose which located at cell wall or extracellular space and dehiscence-resistance can be manipulated by altering the expression of MANNANASE7. Silique dehiscence is an important physiological process in plant reproductive development, but causes heavy yield loss in crops. The lack of dehiscence-resistant germplasm limits the application of mechanized harvesting and greatly restricts the rapeseed (Brassica napus L.) production. Hemicellulases, together with cellulases and pectinases, play important roles in fruit development and maturation. The hemicellulase gene MANNANASE7 (MAN7) was previously shown to be involved in the development and dehiscence of Arabidopsis (Arabidopsis thaliana) siliques. Here, we cloned BnaA07g12590D (BnMAN7A07), an AtMAN7 homolog from rapeseed, and demonstrate its function in the dehiscence of rapeseed siliques. We found that BnMAN7A07 was expressed in both vegetative and reproductive organs and significantly highly expressed in leaves, flowers and siliques where the abscission or dehiscence process occurs. Subcellular localization experiment showed that BnMAN7A07 was localized in the cell wall. The biological activity of the BnMAN7A07 protein isolated and purified through prokaryotic expression system was verified to catalyse the decomposition of xylan into xylose. Phenotypic studies of RNA interference (RNAi) lines revealed that down-regulation of BnMAN7A07 in rapeseed could significantly enhance silique dehiscence-resistance. In addition, the expression of upstream silique development regulators is altered in BnMAN7A07-RNAi plants, suggesting that a possible feedback regulation mechanism exists in the regulation network of silique dehiscence. Our results demonstrate that dehiscence-resistance can be manipulated by altering the expression of hemicellulase gene BnMAN7A07, which could provide an available genetic resource for breeding practice in rapeseed which is beneficial to mechanized harvest.


Assuntos
Brassica napus/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Parede Celular/enzimologia , Regulação para Baixo , Espaço Extracelular/enzimologia , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/genética , Manosidases/genética , Manosidases/metabolismo , Melhoramento Vegetal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Angew Chem Int Ed Engl ; 60(28): 15548-15555, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961329

RESUMO

Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell-cell junctions. In this study, we report a fluorescence lifetime-based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand-receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement-based DNA tension probes to image E-cadherin-mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E-cadherin and N-cadherin tensions during an epithelial-mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.


Assuntos
Caderinas/química , DNA/química , Fluorescência , Corantes Fluorescentes/química , Imagem Óptica , Humanos , Junções Intercelulares , Resistência à Tração
7.
J Surg Res ; 245: 403-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430716

RESUMO

BACKGROUND: Despite preventive methods and careful surgical technique, surgical site infection and incisional hernias are of main concern after the closure of surgical incisions and keep haunting abdominal wall wound healing. The aim of this study is to find how surgical expertise level modifies biomechanical properties of sutures commonly used in abdominal wall fascial closure (polypropylene, polyglactin 910, polydioxanone). MATERIALS AND METHODS: Surgery residents with different experience levels performed abdominal wall fascial closure in swine models with the previously mentioned suture materials. A standardized technique was used. Sutures were removed, and a tensile stress test was performed on the removed sutures. A total of 81 abdominal fascial closures were achieved. Time, extension, maximum tensile force (Ftmax), and maximum stress were measured and analyzed. RESULTS: The results of the polydioxanone stress test present a trend in three variables: extension, tensile force, and stress. The trend shows higher medians in the expert group and lower medians in the novice group. While using polypropylene sutures, medians in the expert group are the highest; however, a trend is not observed. Polyglactin 910 sutures have nonspecific behavior among the different experience groups and variables. Polypropylene is the material with the lowest Ftmax tested and fails at 42.64 (IQR 40.98-44.89) N. Regarding the elastic properties of the material, polyglactin demonstrates the least extension of all sutures tested, with a 14 (IQR 13.33-14.83) mm extension. This study demonstrates that polydioxanone has a superior Ftmax compared with polypropylene and has a superior extension at failure properties compared with polyglactin, confirming that polydioxanone could be the suture of choice used for abdominal wall fascial closure. CONCLUSIONS: Study results do not show statistically significant differences regarding the impact of the experience level of different general surgery residents in the biomechanical properties of sutures used in abdominal wall fascial closure.


Assuntos
Parede Abdominal/cirurgia , Competência Clínica , Cirurgia Geral/educação , Técnicas de Sutura , Suturas , Animais , Fenômenos Biomecânicos , Suínos
8.
Sensors (Basel) ; 21(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375388

RESUMO

Compared to laparoscopy, robotics-assisted minimally invasive surgery has the problem of an absence of force feedback, which is important to prevent a breakage of the suture. To overcome this problem, surgeons infer the suture force from their proprioception and 2D image by comparing them to the training experience. Based on this idea, a deep-learning-based method using a single image and robot position to estimate the tensile force of the sutures without a force sensor is proposed. A neural network structure with a modified Inception Resnet-V2 and Long Short Term Memory (LSTM) networks is used to estimate the suture pulling force. The feasibility of proposed network is verified using the generated DB, recording the interaction under the condition of two different artificial skins and two different situations (in vivo and in vitro) at 13 viewing angles of the images by changing the tool positions collected from the master-slave robotic system. From the evaluation conducted to show the feasibility of the interaction force estimation, the proposed learning models successfully estimated the tensile force at 10 unseen viewing angles during training.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Suturas , Retroalimentação , Fenômenos Mecânicos
9.
J Cell Physiol ; 234(4): 4528-4539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30206934

RESUMO

Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.


Assuntos
Calcificação Fisiológica , Fator 2 de Diferenciação de Crescimento/biossíntese , Mecanotransdução Celular , Ligamento Periodontal/metabolismo , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Fator 2 de Diferenciação de Crescimento/genética , Homeostase , Humanos , Ligamento Periodontal/citologia , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Estresse Mecânico , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
10.
Oral Dis ; 25(1): 274-281, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29683234

RESUMO

OBJECTIVE: Masticatory muscle tendon-aponeurosis hyperplasia, which is associated with limited mouth opening, progresses very slowly from adolescence. The prevalence rates of this disease are higher among women than among men, suggesting oestrogen involvement. As parafunctional habits are frequently observed, mechanical stress is likely involved in the pathogenesis and advancement of this disease. To elucidate the pathological condition, we examined the effect of oestrogen on tenocyte function and the relationship between mechanical stress and crystallin beta A4 (Cryba4), using murine TT-D6 tenocytes. MATERIALS AND METHODS: Cell proliferation assays, RT-PCR, real-time RT-PCR, Western blot analysis and mechanical loading experiments were performed. RESULTS: The physiological dose of oestrogen increased the levels of scleraxis and tenomodulin in TT-D6 tenocytes. In contrast, forced expression of Cryba4 inhibited scleraxis expression in these cells. Surprisingly, oestrogen significantly promoted cell differentiation in the Cryba4-overexpressing TT-D6 tenocytes. Moreover, tensile force induced Cryba4 expression in these tendon cells. CONCLUSION: Oestrogen and Cryba4 may be associated with the progression of masticatory muscle tendon-aponeurosis hyperplasia.


Assuntos
Aponeurose/patologia , Estrogênios/fisiologia , Músculos da Mastigação/patologia , Tendões/patologia , Cadeia A de beta-Cristalina/genética , Animais , Células Cultivadas , Humanos , Hiperplasia , Camundongos , Estresse Mecânico
11.
Sensors (Basel) ; 19(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083519

RESUMO

During the propagation of ultrasound in a polycrystalline material, ultrasonic energy losses due to the scattering at the boundaries between grains is usually described by the ultrasonic energy diffusion equation, and the boundaries of the grains in the material are influenced by the structural load. The aim of this research is to investigate the characterization of ultrasonic energy diffusion in a steel alloy sample under structural load by using lead zirconate titanate (PZT) transducers. To investigate the influence of structural load on ultrasonic energy diffusion, an experimental setup of a steel alloy plate under different tensile forces is designed and four samples with similar dimensions are fabricated. The experimental results of the four samples reveal that, during the loading process, the normalized ultrasonic energy diffusion coefficient fluctuates firstly, then decreases and at last increases as the tensile force increases. The proposed tensile force index shows a similar changing trend to the recorded displacement of the sample. Moreover, when the tensile force is less than the lower yield point or the sample deforms elastically, the index can be approximated by a cubic model. Therefore, the proposed tensile force index can be used to monitor the tensile force in the elastic deformation stage. Moreover, based on these findings, some force evaluation methods and their potential applications, such as the preloading detection of bolts, can be developed based on the linear relationships between the proposed index and the applied force.

12.
Biochem Biophys Res Commun ; 506(4): 950-955, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401563

RESUMO

To explore Girdin/Akt pathway protein expression and morphology change by cyclic tension in the periodontal ligament cells. Human periodontal ligament cells were exposed to cyclic tension force at 4000 µstrain and 0.5 Hz for 6 h though a four-point bending system. Cyclic tension force upregulated F-actin, Girdin and Akt expression in hPDL. In transmission electron microscope assay showed that there are more and bigger mitochondria, more and longer cynapses, more cellular organisms after tension force stimulation than control. The actin filament was changed to be regular lines and pointed to poles of cells. However, we found that the Girdin-depleted cells are small and there are more micro-organisms including more lysosomes and matrix vesicles than control. These finding suggest that the STAT3/Girdin/Akt pathway in PDL to response to mechanical stimulation as well, and Girdin may play a significant role in triggering cell proliferation and migration during orthodontic treatment. It provided an insight into the molecular basis for development of a vitro cell model in studying orthodontic treatment.


Assuntos
Citoesqueleto de Actina/metabolismo , Ligamento Periodontal/patologia , Estresse Mecânico , Resistência à Tração , Actinas/metabolismo , Fenômenos Biomecânicos , Células Cultivadas , Humanos , Proteínas dos Microfilamentos/metabolismo , Ligamento Periodontal/microbiologia , Ligamento Periodontal/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Proteínas de Transporte Vesicular/metabolismo
13.
Development ; 142(4): 787-96, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25670797

RESUMO

The periodontal ligament (PDL) is a mechanosensitive noncalcified fibrous tissue connecting the cementum of the tooth and the alveolar bone. Here, we report that scleraxis (Scx) and osterix (Osx) antagonistically regulate tensile force-responsive PDL fibrogenesis and osteogenesis. In the developing PDL, Scx was induced during tooth eruption and co-expressed with Osx. Scx was highly expressed in elongated fibroblastic cells aligned along collagen fibers, whereas Osx was highly expressed in the perialveolar/apical osteogenic cells. In an experimental model of tooth movement, Scx and Osx expression was significantly upregulated in parallel with the activation of bone morphogenetic protein (BMP) signaling on the tension side, in which bone formation compensates for the widened PDL space away from the bone under tensile force by tooth movement. Scx was strongly expressed in Scx(+)/Osx(+) and Scx(+)/Osx(-) fibroblastic cells of the PDL that does not calcify; however, Scx(-)/Osx(+) osteogenic cells were dominant in the perialveolar osteogenic region. Upon BMP6-driven osteoinduction, osteocalcin, a marker for bone formation was downregulated and upregulated by Scx overexpression and knockdown of endogenous Scx in PDL cells, respectively. In addition, mineralization by osteoinduction was significantly inhibited by Scx overexpression in PDL cells without affecting Osx upregulation, suggesting that Scx counteracts the osteogenic activity regulated by Osx in the PDL. Thus, Scx(+)/Osx(-), Scx(+)/Osx(+) and Scx(-)/Osx(+) cell populations participate in the regulation of tensile force-induced remodeling of periodontal tissues in a position-specific manner.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ligamento Periodontal/metabolismo , Resistência à Tração/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA , Ratos , Ratos Wistar , Fator de Transcrição Sp7 , Fatores de Transcrição/genética
14.
EMBO Rep ; 16(2): 250-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25550404

RESUMO

Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.


Assuntos
Actomiosina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibras de Estresse/metabolismo , Animais , Linhagem Celular , Adesões Focais/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Camundongos , Miosina Tipo II/metabolismo , Células NIH 3T3 , Resistência à Tração/fisiologia
15.
J Bone Miner Metab ; 35(1): 40-51, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26825658

RESUMO

Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.


Assuntos
Suturas Cranianas , Regulação da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Fisiológica/fisiologia , Resistência à Tração/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adolescente , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Suturas Cranianas/irrigação sanguínea , Suturas Cranianas/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Mecânico , Quinases Associadas a rho/metabolismo
16.
Sensors (Basel) ; 17(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867790

RESUMO

The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons.

17.
J Bone Miner Metab ; 34(4): 406-16, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26204845

RESUMO

Little is known about the effects of tensile forces on osteoclastogenesis by human monocytes in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study we consider the effects of tensile force on osteoclastogenesis in human monocytes. The cells were treated with receptor activator of nuclear factor κB ligand (RANKL) to promote osteoclastogenesis. Then,expression and secretion of cathepsin K were examined. RANKL and the formation of osteoclasts during the osteoclast differentiation process under continual tensile stress were evaluated by Western blot. It was also found that -100 kPa or lower induces RANKL-enhanced tartrate-resistant acid phosphatase activity in a dose-dependent manner. Furthermore, an increased tensile force raises the expression and secretion of cathepsin K elevated by RANKL, and is concurrent with the increase of TNF-receptor-associated factor 6 induction and nuclear factor κB activation. Overall, the current report demonstrates that tensile force reinforces RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The tensile force is able to modify every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, affecting the fusion of preosteoclasts and function of osteoclasts. However, tensile force increased TNF-receptor-associated factor 6 expression. These results are in vitro findings and were obtained under a condition of tensile force. The current results help us to better understand the cellular roles of human macrophage populations in osteoclastogenesis as well as in alveolar bone remodeling when there is tensile stress.


Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Resistência à Tração , Catepsina K/biossíntese , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , NF-kappa B/metabolismo , Osteoclastos/citologia , Fator 6 Associado a Receptor de TNF/metabolismo
18.
Exp Cell Res ; 323(1): 232-241, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24561081

RESUMO

Periodontal ligament cells play important roles in the homeostasis of periodontal tissue by mechanical stress derived from mastication, such as tension, compression, fluid shear, and hydrostatic force. In the present study, we showed that cyclic tensile force increased the gene expression level of bone morphogenetic protein (BMP)-2, a crucial regulator of mineralization, in human periodontal ligament cells using real-time PCR. Signaling inhibitors, PD98059/U0126 (extracellular signal-regulated kinase (ERK) inhibitors) and SB203580/SB202190 (p38 inhibitors), revealed that tensile force-mediated BMP-2 expression was dependent on activation of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways. Cyclic tensile force also induced cyclooxygenase-2 (COX-2) gene expression in a manner dependent on ERK1/2 and p38 MAP kinase pathways, and induced prostaglandin E2 (PGE2) biosynthesis. NS-398, a COX-2 inhibitor, significantly reduced tensile force-mediated BMP-2 expression, indicating that PGE2 synthesized by COX-2 may be involved in the BMP-2 induction. The inhibitory effect of NS-398 was completely restored by the addition of exogenous PGE2. However, stimulation with PGE2 alone in the absence of tensile force had no effect on the BMP-2 induction, indicating that some critical molecule(s) other than COX-2/PGE2 may be required for cyclic tensile force-mediated BMP-2 induction. Collectively, the results indicate that cyclic tensile force activates ERK1/2 and p38 MAP kinase signaling pathways, and induces COX-2 expression, which is responsible for the sequential PGE2 biosynthesis and release, and furthermore, mediates the increase in BMP-2 expression at the transcriptional level.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ligamento Periodontal/metabolismo , Estresse Fisiológico/fisiologia , Adulto , Força de Mordida , Proteína Morfogenética Óssea 2/biossíntese , Butadienos/farmacologia , Calcificação Fisiológica/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Masculino , Mastigação , Dente Serotino/citologia , Nitrilas/farmacologia , Nitrobenzenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Regulação para Cima , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Hernia ; 28(2): 527-535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38212505

RESUMO

PURPOSE: Using small instead of large bites for laparotomy closure results in lower incidence of incisional hernia, but no consensus exists on which suture material to use. This study aimed to compare five different closure strategies in a standardized experimental setting. METHODS: Fifty porcine abdominal walls were arranged into 5 groups: (A) running 2/0 polydioxanone; (B) interlocking 2/0 polydioxanone; (C) running size 0 barbed polydioxanone; (D) running size 0 barbed glycolic acid and trimethylene carbonate; (E) running size 0 suturable polypropylene mesh. The small-bites technique was used for linea alba closure in all. The abdominal walls were divided into a supra- and infra-umbilical half, resulting in 20 specimens per group that were pulled apart in a tensile testing machine. Maximum tensile force and types of suture failure were registered. RESULTS: The highest tensile force was measured when using barbed polydioxanone (334.8 N ± 157.0), but differences did not reach statistical significance. Infra-umbilical abdominal walls endured a significantly higher maximum tensile force compared to supra-umbilical (397 N vs 271 N, p < 0.001). Barbed glycolic acid and trimethylene carbonate failed significantly more often (25% vs 0%, p = 0.008). CONCLUSION: Based on tensile force, both interlocking and running suture techniques using polydioxanone, and running sutures using barbed polydioxanone or suturable mesh, seem to be suitable for abdominal wall closure. Tensile strength was significantly higher in infra-umbilical abdominal walls compared to supra-umbilical. Barbed glycolic acid and trimethylene carbonate should probably be discouraged for fascial closure, because of increased risk of suture failure.


Assuntos
Parede Abdominal , Técnicas de Fechamento de Ferimentos Abdominais , Glicolatos , Suínos , Animais , Parede Abdominal/cirurgia , Polidioxanona , Herniorrafia , Técnicas de Sutura/efeitos adversos , Modelos Animais , Resistência à Tração , Laparotomia , Suturas , Técnicas de Fechamento de Ferimentos Abdominais/efeitos adversos
20.
Cureus ; 16(8): e66683, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39262512

RESUMO

INTRODUCTION: The peroneus longus tendon (PLT) is increasingly used as a tendon autograft in ligament and tendon reconstructions. The aim of this study is to evaluate the biomechanical properties of the PLT to assess its usability in frequently performed reconstructions. METHODS: Six fresh-frozen, below-knee cadavers with a mean age of 65 years, no previous surgical operation, and no history of chronic disease were used. PLTs were harvested, freed from muscle tissue, and prepared for tensile strength testing at a tensile force rate of 2 mm/min using a Shimadzu Autograph AG-IS 100 kN instrument (Shimadzu Corporation, Kyoto, Japan). RESULTS: The maximum tensile force varied between 600.7 N and 1131.313 N, with a median of 758.185 N. All tendons had diameters of 8 mm or more. The elongation at maximum force ranged from 9.0 mm to 16.0 mm, with a median of 14.0 mm. CONCLUSION: According to this study, PLT is a viable choice for surgeries involving autograft reconstruction. However, further clinical studies are needed to confirm its efficacy in reconstructive surgeries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA