Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Fish Shellfish Immunol ; 131: 570-581, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257557

RESUMO

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important inflammasome in mammals, which is of great significance to eliminate pathogens. However, the research of the NLRP3 inflammasome in teleost is limited. Tetraodon nigroviridis has the characteristics of small genome and easy feeding, which can be used as a model for the study of fish immune function. In present study, three NLRP3 inflammasome component genes (NLRP3, ASC and caspase-1) in T. nigroviridis has been cloned. Real-time fluorescence quantitative PCR showed that TnNLRP3 (T. nigroviridis NLRP3), TnASC (T. nigroviridis ASC) and Tncaspase-1 (T. nigroviridis caspase-1) mRNA in various tissues from health T. nigroviridis were highly expressed in immune-related tissues, such as spleen, gill, head kidney and intestine. After Vibrio parahemolyticus infection, the expression of TnNLRP3, TnASC and Tncaspase-1 mRNA in spleen, gill, head kidney reached a peak at 24 h, and the expression levels of these genes in intestine were the highest at 48 h. After the transfection of TnASC-pAcGFP-N1 monomer GFP plasmid into cos-7 cells, ASC specks, the activation marker of NLRP3 inflammasome, were observed. Bimolecular fluorescence complementarity and fluorescence colocation experiment showed that TnASC and Tncaspase-1 of TnNLRP3 inflammasome were co-located near the cell nucleus, and potentially interacted with each other. NLRP3 inflammasome inducer nigericin and agonist ATP could significantly induce the expression of TnNLRP3, TnASC and Tncaspase-1 mRNA, and activation of NLRP3 inflammasome could promote the generation of mature TnIL-1ß (T. nigroviridis IL-1ß). These results uncover that T. nigroviridis NLRP3 inflammasome could participate in the antibacterial immune response and the generation of mature TnIL-1ß after activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/genética , Caspase 1/genética , Proteínas de Transporte/metabolismo , RNA Mensageiro , Mamíferos/genética , Mamíferos/metabolismo
2.
Fish Shellfish Immunol ; 120: 102-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34737057

RESUMO

Vibrio parahaemolyticus is an important marine pathogen that cause inflammation even death in teleost. It has brought huge economic losses to aquaculture and serious threats to the sustainable development of marine fisheries. Here, we isolated the DNA, RNA, and total flagellin from V. parahaemolyticus, and obtained the primary spleen and head kidney cells (including leukocytes) from Tetraodon nigroviridis. V. parahaemolyticus DNA, RNA, and total flagellin were used to treat the T. nigroviridis primary cells described above. The results show that the nitric oxide (NO) production and respiratory burst response were significantly induced after stimulation with V. parahaemolyticus total flagellin in T. nigroviridis head kidney and spleen cells. And total flagellin could promote the gene expression and protein production of IL-1ß in T. nigroviridis leukocytes. T. nigroviridis TLR5M (TnTLR5M) and TLR5S (TnTLR5S) ORF sequences were obtained as the main recognition receptor for flagellin. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect the expression of pattern recognition receptor TnTLR5M and TnTLR5S, the important signal molecule of inflammatory system TnMyD88 and TnTRAF6, and inflammatory cytokines TnIL-1ß and TnIFN-γ2. The results show that there were a significant upregulation after challenge with V. parahaemolyticus total flagellin. We further demonstrated that the total flagellin of V. parahaemolyticus could activate the luciferase activity of the NF-κB reporter gene mediated by TnTLR5M. Overall, our results suggest that V. parahaemolyticus total flagellin activated the NO production, respiratory burst response, and inflammatory cytokines expressions, such as TnIL-1ß and TnIFN-γ2, through the TnTLR5M-NF-κB signaling pathway in T. nigroviridis.


Assuntos
Flagelina , Tetraodontiformes , Vibrio parahaemolyticus , Animais , Citocinas/imunologia , Proteínas de Peixes/genética , Flagelina/imunologia , Interferon gama/imunologia , Interleucina-1beta/imunologia , NF-kappa B/genética , Tetraodontiformes/imunologia , Tetraodontiformes/microbiologia , Receptor 5 Toll-Like/genética , Vibrio parahaemolyticus/imunologia
3.
Fish Shellfish Immunol ; 56: 388-396, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27426523

RESUMO

Vibriosis is the most common bacterial diseases and brings great economic loss on aquaculture. Vibrio parahaemolyticus (V. parahaemolyticus), a gram-negative bacterium, has been identified as one main pathogens of Vibriosis. The pathogenic mechanism of V. parahaemolyticus is not entirely clear now. In our study, a model of V. parahaemolyticus infection of green-spotted puffer fish (Tetraodon nigroviridis) was established. T. nigroviridis were injected intraperitoneally (i.p.) with 200 µL of V. parahaemolyticus (8 × 10(10) CFU/mL). V. parahaemolyticus infection caused 64% mortality and infected some organs of T. nigroviridis. Histopathology studies revealed V. parahaemolyticus infection induced tissue structural changes, including adipose hollow space in the liver. Immunohistochemistry showed V. parahaemolyticus were present in infected tissue such as liver, head kidney and spleen. In livers of T. nigroviridis infected by V. parahaemolyticus, the alkaline phosphatases (ALP) activity first gradually increased and then backed to normal level, a trend that was on the contrary to the expression profile of the miR-29b. Quantitative real-time PCR analysis showed that the expression level of TLR1, TLR2, TLR5, TLR9, TLR21, NOD1, NOD2 and IL-6 in response to V. parahaemolyticus infection decreased compared to that of non-infected fish. The establishment of the T. nigroviridis model of V. parahaemolyticus infection further confirmed V. parahaemolyticus spreads through the blood circulation system primary as an extracellular pathogen. Meanwhile, liver is an important target organ when infected by V. parahaemolyticus. miR-29b in liver was involved in the progress of liver steatosis during V. parahaemolyticus infection. Moreover, V. parahaemolyticus infection in vivo may have an effect of immunosuppression on host.


Assuntos
Modelos Animais de Doenças , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Receptores de Reconhecimento de Padrão/genética , Tetraodontiformes , Vibrioses/veterinária , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Interações Hospedeiro-Patógeno , Hepatopatias/enzimologia , Hepatopatias/microbiologia , Hepatopatias/patologia , Hepatopatias/veterinária , Receptores de Reconhecimento de Padrão/metabolismo , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/fisiologia
4.
J Zoo Wildl Med ; 47(2): 676-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27468050

RESUMO

Many pufferfish possess tetrodotoxin (TTX). Unaware of this fact, the owner of a 3-mo-old pet Cuvier's dwarf caiman ( Paleosuchus palpebrosus ) fed the caiman a green spotted pufferfish ( Tetraodon nigroviridis ), acquired from a local discount department store. The caiman was nonresponsive within an hour of consumption of the fish. The caiman was presented for veterinary evaluation but died despite intensive medical care. High-performance liquid chromatography and a competitive inhibition enzyme immunoassay were used to determine whether the pufferfish was tetrodotoxic and whether the deceased caiman had TTX in its system. Skin and liver of the pufferfish harbored high concentrations of TTX, and the caiman had TTX in the blood, liver, and kidney. The clinical signs and presence of TTX in the caiman suggest that the caiman succumbed to tetrodotoxicosis. The implication is that lethally poisonous species are available commercially and pose a danger to other pets and possibly small children.


Assuntos
Jacarés e Crocodilos , Intoxicação/veterinária , Tetraodontiformes/fisiologia , Tetrodotoxina/toxicidade , Animais , Intoxicação/patologia , Comportamento Predatório
5.
Mar Genomics ; 37: 182-186, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29273445

RESUMO

The pufferfish accumulates neurotoxic tetrodotoxin in its body and inflates by filling its stomach with water. These traits are unique to this species, and may be a result of adaptation post-divergence of Tetraodontidae. However, evolution of the protein-coding genes in the pufferfish has not yet been well elucidated. Detection of positive selection on these genes can help us understand the mechanisms associated with functional evolution. We downloaded well-annotated gene information of two pufferfish species, Takifugu rubripes and Tetraodon nigroviridis, from the public ENSEMBL database. In order to detect selective pressure on protein-coding sequences, we performed dN/dS estimation using codeml within the PAML software package. We selected one to one orthologous genes among seven fish species (Gasterosteus aculeatus, Oryzias latipes, Poecilia formosa, Takifugu rubripes, Tetraodon nigroviridis, and Xiphophorus maculatus). Results of dN/dS analysis on orthologous genes indicate that pufferfish showed high non-synonymous substitution rate for positively selected genes, and the evolutionary rate was faster during the diversification of two pufferfishes after divergence. Additionally, a candidate mechanism for regulation of neuro-toxicity of tetrodotoxin was identified from functional annotation of positively selected genes. These results support positive selection on protein-coding genes of the pufferfish with the acquisition of specific phenotypic traits.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Fenótipo , Seleção Genética , Takifugu/genética , Tetraodontiformes/genética , Animais , Análise de Sequência de DNA , Takifugu/metabolismo , Tetraodontiformes/metabolismo
6.
Front Physiol ; 8: 576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848450

RESUMO

FXYD proteins are important regulators of Na+/K+-ATPase (NKA) activity in mammals. As an inhabitant of estuaries, the pufferfish (Tetraodon nigroviridis) responds to ambient salinity changes with efficient osmoregulation, including alterations in branchial, and renal NKA activities. Previous studies on teleostean FXYDs have mainly focused on the expression and potential functions of FXYD proteins in gills. The goal of the present study was to elucidate the potential role of FXYD8, a member of the fish FXYD protein family, in the modulation of NKA activity in the kidneys of this euryhaline pufferfish by using molecular, biochemical, and physiological approaches. The results demonstrate that T. nigroviridis FXYD8 (TnFXYD8) interacts with NKA in renal tubules. Meanwhile, the protein expression of renal TnFXYD8 was found to be significantly upregulated in hyperosmotic seawater-acclimated pufferfish. Moreover, overexpression of TnFXYD8 in Xenopus oocytes decreased NKA activity. Our results suggest the FXYD8 is able to modulate NKA activity through inhibitory effects upon salinity challenge. The present study further extends our understanding of the functions of FXYD proteins, the regulators of NKA, in vertebrates.

7.
Mol Immunol ; 70: 34-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701668

RESUMO

Interferon gamma (IFNγ) is a Th1 cytokine that plays a very important role in almost all phases of immune and inflammatory responses. In this study, we explored the functions of IFNγ1 and IFNγ2 of Tetraodon nigroviridis. Treating T. nigroviridis spleen and head kidney cells in vitro with recombinant T. nigroviridis IFNγ1 protein (rTn IFNγ1) or recombinant T. nigroviridis IFNγ2 protein (rTn IFNγ2) enhanced their nitric oxide responses. Both rTn IFNγ1 and rTn IFNγ2 also induced the expression of interferon-stimulated gene 15 (ISG15), a common anti-viral gene, although the expression of the interferon-inducible Mx gene was markedly inhibited by rTn IFNγ1 and was induced by rTn IFNγ2. The in vivo effects of rTn IFNγ1 and rTn IFNγ2 on Vibrio parahaemolyticus (V. parahaemolyticus) infection were assessed by intraperitoneally injecting rTn IFNγ1 or rTn IFNγ2 (100 ng) and V. parahaemolyticus (8 × 10(10)CFU/mL) into T. nigroviridis. A comparison of the group treated only with V. parahaemolyticus and those also treated with rTn IFNγ1 or rTn IFNγ2 showed that neither of these IFNγs protected T. nigroviridis from V. parahaemolyticus infection. However, rTn IFNγ1 more rapidly and robustly promoted inflammatory responses compared with rTn IFNγ2, whereas rTn IFNγ2 was involved in inducing the host to develop a more effective response earlier during the later stage of a V. parahaemolyticus infection. Moreover, microRNA-29b (miR-29b) expression is inversely correlated with IFNγ2 expression in T. nigroviridis.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Interferon gama/genética , MicroRNAs/genética , Tetraodontiformes/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Interferon gama/imunologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetraodontiformes/microbiologia , Vibrioses/genética , Vibrioses/imunologia , Vibrio parahaemolyticus
8.
Dev Comp Immunol ; 44(2): 270-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412214

RESUMO

In the present study, the divergent properties of IFNGR1 isoforms (IFNGR1-1 and IFNGR1-2) were characterized in Tetraodon nigroviridis. Despite the structural similarities between these proteins, two T. nigroviridis IFNGR1 homologues differ from each other not only in their primary nucleotide and amino acid sequences but also in their syntenic structure. Genomic analysis demonstrates the conservation of synteny between the fish IFNGR1-2s and IFNGR1s in higher vertebrates; conversely, the IFNGR1-1 has no corresponding conservation of synteny with Gallus gallus and Homo sapiens, suggesting that the two genes were derived from two different origins. Additionally, their different sensitivities to mitogens and recombinant T. nigroviridis IFN-γs were observed. Furthermore, ligand-binding analysis strongly supported the model proposed in Danio rerio, which suggests that IFNGR1-1 is the major component of the IFN-γrel receptor complex; IFN-γ most likely binds to both IFNGR1-2 and IFNGR1-1. This study is a further step towards elucidating the teleostean IFN-γ system, which is different from that in mammals.


Assuntos
Isoformas de Proteínas/metabolismo , Receptores de Interferon/metabolismo , Tetraodontiformes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Evolução Molecular , Humanos , Interferon gama/metabolismo , Modelos Biológicos , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Receptores de Interferon/genética , Receptores de Interferon/isolamento & purificação , Homologia Estrutural de Proteína , Sintenia , Peixe-Zebra , Receptor de Interferon gama
9.
Dev Comp Immunol ; 43(1): 23-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24183820

RESUMO

The suppressor of cytokine signaling 1 (SOCS-1) protein is a critical regulator in the immune systems of humans and mammals, which functions classically as an inhibitor of the IFN signaling pathways. However, data on functional characterisation of SOCS-1 in ancient vertebrates are limited. In this study, we report the function of teleost SOCS-1s in IFN signaling in fish models (zebrafish and Tetraodon) and human cells. Structurally, teleost SOCS-1s share conserved functional domains with their mammalian counterparts. Functionally, teleost SOCS-1s could be significantly induced upon stimulation with IFN stimulants and zebrafish IFNφ1. Overexpression of teleost SOCS-1s could dramatically suppress IFNφ1-induced Mx, Viperin and PKZ activation in zebrafish, and IFN-induced ISG15 activation in HeLa cells. Furthermore, a SOCS-1 variant that lacks the KIR domain was also characterised. This study demonstrates the conserved negative regulatory role of teleost SOCS-1s in IFN signaling pathways, providing perspective into the functional conservation of SOCS-1 proteins during evolution.


Assuntos
Proteínas de Peixes/metabolismo , Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tetraodontiformes/imunologia , Peixe-Zebra/imunologia , Animais , Sequência Conservada , Citocinas/genética , Citocinas/metabolismo , Proteínas de Peixes/genética , Variação Genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos , Mutação/genética , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Transgenes/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Gene ; 527(2): 624-9, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23856130

RESUMO

MicroRNAs (miRNAs) are crucial negative regulators of gene expression at the post-transcriptional level. Next-generation sequencing technologies have identified a series of miRNA variants (named isomiRs). In this study, paralogous isomiR assemblies (from the miRNA locus) were systematically analyzed based on data acquired from deep sequencing data sets. Evolutionary analysis of paralogous (members in miRNA gene family in a specific species) and orthologues (across different animal species) miRNAs was also performed. The sequence diversity of paralogous isomiRs was found to be similar to the diversity of paralogous and orthologues miRNAs. Additionally, both isomiRs and paralogous/orthologues miRNAs were implicated in 5' and 3' ends (especially 3' ends), nucleotide substitutions, and insertions and deletions. Generally, multiple isomiRs can be produced from a single miRNA locus, but most of them had lower enrichment levels, and only several dominant isomiR sequences were detected. These dominant isomiR groups were always stable, and one of them would be selected as the most abundant miRNA sequence in specific animal species. Some isomiRs might be consistent to miRNA sequences in some species but not the other. Homologous miRNAs were often detected in similar isomiR repertoires, and showed similar expression patterns, while dominant isomiRs showed complex evolutionary patterns from miRNA sequences across the animal kingdom. These results indicate that the phenomenon of multiple isomiRs is not a random event, but rather the result of evolutionary pressures. The existence of multiple isomiRs enables different species to express advantageous sequences in different environments. Thus, dominant sequences emerge in response to functional and evolutionary pressures, allowing an organism to adapt to complex intra- and extra-cellular events.


Assuntos
MicroRNAs/genética , Animais , Sequência de Bases , Genes Dominantes , Humanos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
11.
Evol Bioinform Online ; 3: 179-95, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-19461980

RESUMO

Retroid agents are genomes that encode a reverse transcriptase (RT) and replicate or transpose by way of an RNA intermediate. The Genome Parsing Suite (GPS) is software created to identify and characterize Retroid agents in any genome database (McClure et al. 2005). The detailed analysis of all Retroid agents found by the GPS in Danio rerio (zebrafish), Oryzias latipes (medaka), Gasterosteus aculeatus (stickleback) and Tetraodon nigroviridis (spotted green pufferfish) reveals extensive Retroid agent diversity in the compact genomes of all four fish. Novel Retroid agents were identified by the GPS software: the telomerase reverse transcriptase (TERT) in O. latipes, G. aculeatus and T. nigroviridis and a potential TERT in D. rerio, a retrotransposon in D. rerio, and multiple lineages of endogenous retroviruses (ERVs) in D. rerio, O. latipes and G. aculeatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA