Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731989

RESUMO

Drug candidates must undergo thermal evaluation as early as possible in the preclinical phase of drug development because undesirable changes in their structure and physicochemical properties may result in decreased pharmacological activity or enhanced toxicity. Hence, the detailed evaluation of nitrogen-rich heterocyclic esters as potential drug candidates, i.e., imidazolidinoannelated triazinylformic acid ethyl esters 1-3 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -COOC2H5) and imidazolidinoannelated triazinylacetic acid methyl esters 4-6 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -CH2COOCH3)-in terms of their melting points, melting enthalpy values, thermal stabilities, pyrolysis, and oxidative decomposition course-has been carried out, using the simultaneous thermal analysis methods (TG/DTG/DSC) coupled with spectroscopic techniques (FTIR and QMS). It was found that the melting process (documented as one sharp peak related to the solid-liquid phase transition) of the investigated esters proceeded without their thermal decomposition. It was confirmed that the melting points of the tested compounds increased in relation to R1 and R2 as follows: 2 (R1 = 4-OCH3; R2 = -COOC2H5) < 6 (R1 = 4-Cl; R2 = -CH2COOCH3) < 5 (R1 = 4-OCH3; R2 = -CH2COOCH3) < 3 (R1 = 4-Cl; R2 = -COOC2H5) < 1 (R1 = 4-CH3; R2 = -COOC2H5) < 4 (R1 = 4-CH3; R2 = -CH2COOCH3). All polynitrogenated heterocyclic esters proved to be thermally stable up to 250 °C in inert and oxidising conditions, although 1-3 were characterised by higher thermal stability compared to 4-6. The results confirmed that both the pyrolysis and the oxidative decomposition of heterocyclic ethyl formates/methyl acetates with para-substitutions at the phenyl moiety proceed according to the radical mechanism. In inert conditions, the pyrolysis process of the studied molecules occurred with the homolytic breaking of the C-C, C-N, and C-O bonds. This led to the emission of alcohol (ethanol in the case of 1-3 or methanol in the case of 4-6), NH3, HCN, HNCO, aldehydes, CO2, CH4, HCl, aromatics, and H2O. In turn, in the presence of air, cleavage of the C-C, C-N, and C-O bonds connected with some oxidation and combustion processes took place. This led to the emission of the corresponding alcohol depending on the analysed class of heterocyclic esters, NH3, HCN, HNCO, aldehydes, N2, NO/NO2, CO, CO2, HCl, aromatics, and H2O. Additionally, after some biological tests, it was proven that all nitrogen-rich heterocyclic esters-as potential drug candidates-are safe for erythrocytes, and some of them are able to protect red blood cells from oxidative stress-induced damage.


Assuntos
Ésteres , Compostos Heterocíclicos , Nitrogênio , Ésteres/química , Nitrogênio/química , Compostos Heterocíclicos/química , Estabilidade de Medicamentos , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Pirólise
2.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838723

RESUMO

To avoid problems associated with the storage and processing of newly developed potential medicines, there is a need to carry out thermal studies in the preclinical phase of drug development. The thermal behaviour and decomposition pathway of a whole novel class of patented potential molecular pharmaceutics, i.e., ethyl 2-[4-oxo-8-(R-phenyl)-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetates (1-6) were reported for the first time in inert and oxidative atmospheres. The experiments were conducted with the use of simultaneous thermogravimetry/differential scanning calorimetry (TG-DSC) and simultaneous thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR). The decomposition pathways of compounds 1-6 were found to be different under oxidative and inert conditions. It was proven that the investigated molecules reveal higher thermal stability under a synthetic air atmosphere than under a nitrogen atmosphere, and their decomposition is preceded by the melting process. Among all the investigated compounds, only the meta-chloro derivative (4) was found to exhibit interesting polymorphic behaviour at a low heating rate (10 °C min-1). It was proven that the oxidative decomposition process of the studied molecules proceeds in three overlapping stages accompanied by strong exothermic effects. Additionally, it was concluded that the title compounds were stable up to a temperature of 195-216 °C in an atmosphere of synthetic air, and their thermal stability decreased in the order of R at the benzene ring: 4-CH3 > 3,4-Cl2 > 4-Cl > H > 2-OCH3 > 3-Cl.


Assuntos
Antineoplásicos , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Varredura Diferencial de Calorimetria , Temperatura
3.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764318

RESUMO

In this article, for the first time, TG-DSC and TG-FTIR investigations of potential pharmaceutics, i.e., analgesic and anticancer active annelated triazinones (1-9) have been presented. The thermal behaviour of these molecules was established in oxidative and inert conditions. The solid-liquid phase transition for each compound (1-9) was documented by one sharp DSC peak confirming the high purity of each sample studied. All the molecules were characterised in terms of calorimetric changes and mass changes during their heating. They revealed high thermal stability in oxidative and inert conditions. The observed tendency in thermal stability changes in relation to a substituent present at the phenyl moiety was found to be similar in air and nitrogen. It was confirmed that annelated triazinones 1-9 were stable up to a temperature range of 241-296 °C in air, and their decomposition process proceeded in two stages under oxidative conditions. In addition, it was established that their thermal stability in air decreased in the following order of R at the phenyl moiety: 4-Cl > 3,4-Cl2 > H > 3-Cl > 4-CH3 > 2-CH3 > 3-CH3 > 2-Cl > 2-OCH3. The volatile decomposition products of the investigated molecules were proposed by comparing the FTIR spectra collected during their thermogravimetric analysis in nitrogen with the spectra from the database of reference compounds. None of annelated triazinones 1-9 underwent any polymorphic transformation during thermal studies. All the compounds proved to be safe for erythrocytes. In turn, molecules 3, 6, and 9 protected red blood cells from oxidative damage, and therefore may be helpful in the prevention of free radical-mediated diseases.

4.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500296

RESUMO

The co-crystallization of (benzylthio)acetic acid (HBTA) with L-proline (L-PRO), D-proline (D-PRO), DL-proline (DL-PRO), isonicotinamide (INA) and tryptamine (TPA) led to the formation of five novel crystalline compounds: L-PRO±·HBTA (1), D-PRO±·HBTA (2), DL-PRO±·HBTA (3), INA·HBTA (4) and TPA+·BTA- (5). The prepared supramolecular assemblies were characterized by single crystal X-ray diffraction, an elemental analysis, FT-IR spectroscopy and a thermal analysis based on thermogravimetry (TG) combined with differential scanning calorimetry (DSC). Additionally, their melting points through TG/DSC measurements were established. All fabricated adducts demonstrated the same stoichiometry, displayed as 1:1. The integration of HBTA with selected N-containing co-formers yielded different forms of multi-component crystalline phases: zwitterionic co-crystals (1-3), true co-crystal (4) or true salt (5). In the asymmetric units of 1-4, the acidic ingredient is protonated, whereas the corresponding N-containing entities take either the zwitterionic form (1-3) or remain in the original neutral figure (4). The molecular structure of complex 5 is occupied by the real ionic forms of both components, namely the (benzylthio)acetate anion (BTA-) and the tryptaminium cation (TPA+). In crystals 1-5, the respective molecular residues are permanently bound to each other via strong H-bonds provided by the following pairs of donor···acceptor: Ocarboxylic···Ocarboxylate and Npyrrolidinium···Ocarboxylate in 1-3, Ocarboxylic···Npyridine and Namine···Ocarboxylic in 4 as well as Nindole···Ocarboxylate and Naminium···Ocarboxylate in 5. The crystal structures of conglomerates 1-5 are also stabilized by numerous weaker intermolecular contacts, including C-H···O (1-3, 5), C-H···S (1, 2, 5), C-H···N (5), C-H···C (5), C-H···π (1-5) as well as π···π (4) interactions. The different courses of registered FT-IR spectral traces and thermal profiles for materials 1-5 in relation to their counterparts, gained for the pure molecular ingredients, also clearly confirm the formation of new crystalline phases.


Assuntos
Ácido Acético , Prolina , Prolina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cristalografia por Raios X
5.
Exp Physiol ; 106(5): 1139-1148, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33745159

RESUMO

NEW FINDINGS: What is the topic of this review? It is generally accepted that sleep deprivation constitutes a predisposing factor to the development of thermal injury. This review summarizes the available human-based evidence on the impact of sleep loss on autonomic and behavioural thermoeffectors during acute exposure to low and high ambient temperatures. What advances does it highlight? Limited to moderate evidence suggests that sleep deprivation per se impairs thermoregulatory defence mechanisms during exposure to thermal extremes. Future research is required to establish whether inadequate sleep enhances the risk for cold- and heat-related illnesses. ABSTRACT: Relatively short periods of inadequate sleep provoke physiological and psychological perturbations, typically leading to functional impairments and degradation in performance. It is commonly accepted that sleep deprivation also disturbs thermal homeostasis, plausibly enhancing susceptibility to cold- and heat-related illnesses. Herein, we summarize the current state of human-based evidence on the impact of short-term (i.e., ≤4 nights) sleep deprivation on autonomic and behavioural thermoeffectors during acute exposure to low and high ambient temperatures. The purpose of this brief narrative review is to highlight knowledge gaps in the area and stimulate future research to investigate whether sleep deprivation constitutes a predisposing factor for the development of thermal injuries.


Assuntos
Transtornos de Estresse por Calor , Privação do Sono , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Temperatura Alta , Humanos , Sono
6.
Chemistry ; 26(12): 2719-2725, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31793083

RESUMO

The synthesis of sulfur- and selenium-containing isosters of triacyl glycerols is herein described. Regioselective fluoride-induced ring-opening reaction of suitable substituted thiiranes with bis(trimethyl)silyl selenide, followed by in situ S- and Se-acylation with fatty acid acyl chlorides, enables the one pot synthesis of mixed chalcogeno esters in good yield. The key step of this methodology is the functionalization of S-Si and Se-Si bonds of silyl chalcogenides, generated in situ under mild conditions. A related procedure for the synthesis of functionalized selenides, bearing two thiol ester and two ester moieties, was also developed through a fine tuning of the reaction conditions. The physico-chemical properties of these novel fatty acid chalcogeno esters have been investigated through DSC, SAXS, WAXS, FTIR and polarized optical microscopy, and compared to those of the common triglycerides in order to highlight the effect of the replacement of oxygen with other chalcogen elements in the polar head of the lipid.

7.
J Synchrotron Radiat ; 26(Pt 1): 205-214, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655486

RESUMO

Indirect detection of X-rays using single-crystal scintillators is a common approach for high-resolution X-ray imaging. With the high X-ray flux available from synchrotron sources and recent advances in high-speed visible-light cameras, these measurements are increasingly used to obtain time-resolved images of dynamic phenomena. The X-ray flux on the scintillator must, in many cases, be limited to avoid thermal damage and failure of the scintillator, which in turn limits the obtainable light levels from the scintillator. In this study, a transient one-dimensional numerical simulation of the temperature and stresses within three common scintillator crystals (YAG, LuAG and LSO) used for high-speed X-ray imaging is presented. Various conditions of thermal loading and convective cooling are also presented.

8.
Sensors (Basel) ; 18(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996550

RESUMO

The Mediterranean region is affected by considerable daily and seasonal temperature variations due to intense solar radiation. In mid-seasons, thermal excursions can exceed tens of degrees thus influencing the long-term behaviour of jointed rock masses acting as a preparatory factor for rock slope instabilities. In order to evaluate the thermal response of a densely jointed rock-block, monitoring has been in operation since 2016 by direct and remote sensing techniques in an abandoned quarry in Acuto (central Italy). Monthly InfraRed Thermographic (IRT) surveys were carried out on its exposed faces and along sections of interest across monitored main joints. The results highlight the daily and seasonal cyclical behaviour, constraining amplitudes and rates of heating and cooling phases. The temperature time-series revealed the effect of sun radiation and exposure on thermal response of the rock-block, which mainly depends on the seasonal conditions. The influence of opened joints in the heat propagation is revealed by the differential heating experienced across it, which was verified under 1D and 2D analysis. IRT has proved to be a valid monitoring technique in supporting traditional approaches, for the definition of the surficial temperature distribution on rock masses or stone building materials.

9.
J Therm Biol ; 78: 352-355, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509657

RESUMO

In the Neotropics, captive vespertilionid bats substantially reduce their metabolic rate at low ambient temperatures, similar to their temperate counterparts, whereas the ability of phyllostomids to lower metabolic rate seems to be more limited, even in mountain species. Nevertheless, field data on the thermal behaviour of syntopic individuals from these two families is lacking. Consequently, we aimed to test whether torpor was more common and deeper in vesper bats compared to leaf-nosed bats by studying skin temperature (Tsk) variation in individuals experiencing the same environmental conditions at a mountain area. Bats experienced ambient temperatures below 15 °C. Average Tsk was 10 °C in Myotis oxyotus gardneri (Vespertilionidae) during the day, while Sturnira burtonlimi (Phyllostomidae) regulated diurnal Tsk above 30 °C. Constant food availability may explain why diurnal Sturnira burtonlimi pay the high energetic cost required to remain normothermic and to defend a wide Ta-Tsk gap but further studies are needed to elucidate additional strategies that may be employed by these bats to reduce the energetic demands of normothermy. Our study shows that the contrasting thermal strategies and torpor use adopted by vespertilionid insectivores and phyllostomid frugivores in captive settings also occur in free-ranging conditions, thus providing a basis to develop further studies with predictions more accurately rooted in field data.


Assuntos
Altitude , Quirópteros/fisiologia , Temperatura Cutânea , Torpor , Aclimatação , Animais , Metabolismo Energético , Comportamento Alimentar , Fotoperíodo
10.
J Food Sci Technol ; 51(9): 2014-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190858

RESUMO

This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.

11.
J Funct Biomater ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667543

RESUMO

The possibility of dental pulp damage during dental procedures is well known. According to studies, during finishing and polishing without cooling, temperatures of up to 140 °C or more can be generated. There are many studies that have analysed the influence of the finishing and polishing of fillings on the mechanical parameters, but the analysis of thermal parameters has led to uncertain results due to the difficulty of performing this in vivo. Background: We set out to conduct a study, using the finite element method, to determine the extent to which the type of class II cavity and the volume of the composite filling influence the duration of heat transfer to the pulp during finishing and polishing without cooling. Materials and Methods: A virtual model of an upper primary molar was used, with a caries process located on the distal aspect, in which four types of cavities were digitally prepared: direct access, horizontal slot, vertical slot and occlusal-proximal. All four cavity types were filled using a Filtek Supreme XT nanocomposite. Results: The study showed that the filling volume almost inversely proportionally influences the time at which the dental pulp reaches the critical temperature of irreversible damage. The lowest duration occurred in occlusal-distal restorations and the highest in direct access restorations. Conclusions: based on the results of the study, a working protocol can be issued so that finishing and polishing restorations without cooling are safe for pulpal health.

12.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063755

RESUMO

Coal fly ash (CFA), a by-product of coal combustion, is a valuable raw material for various applications. However, the heterogeneous nature of the composition and properties of CFA provides challenges to its effective usage and utilisation. This study investigates the thermal behaviour of the fly ashes of lignite (FA1) and brown coal (FA2) and their fractions obtained by dry aerodynamic separation. Thermal analysis techniques, including thermogravimetry (TG), differential scanning calorimetry (DSC), and evolved gas analysis (EGA), were used to characterise the behaviour of the fly ash fractions while heating up to 1250 °C. The results reveal distinct differences in the thermal behaviour between ash types and among their different size fractions. For the FA1 ashes, the concentration of calcium-rich compounds and the level of recrystallisation at 950 °C increased with the decrease in particle size. The most abundant detected newly formed minerals were anhydrite, gehlenite, and anorthite, while coarser fractions were rich in quartz and mullite. For the FA2 ashes, the temperature of the onset of melting and agglomeration decreased with decreasing particle size and was already observed at 995 °C. Coarser fractions mostly remain unchanged, with a slight increase in quartz, mullite, and hematite content. Recrystallisation takes place in less extension compared to the FA1 ashes. The findings demonstrate that the aerodynamic separation of fly ashes into different size fractions can produce materials with varied thermal properties and reactivity, which can be used for specific applications. This study highlights the importance of thermal analysis in characterising fly ash properties and understanding their potential for utilisation in various applications involving thermal treatment or exposure to high-temperature conditions. Further research on advanced separation techniques and the in-depth characterisation of fly ash fractions is necessary to obtain materials with desired thermal properties and identify their most beneficial applications.

13.
J Environ Manage ; 129: 1-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23778155

RESUMO

This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Resíduos Industriais/análise , Reciclagem , Água/química , Absorção , Argila , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Centrais Elétricas , Temperatura , Difração de Raios X
14.
Polymers (Basel) ; 14(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297943

RESUMO

The crystallinity of polymers strongly affects their properties. For block copolymers, whereby two crystallisable blocks are covalently tethered to one another, the molecular weight of the individual blocks and their relative weight fraction are important structural parameters that control their crystallisation. In the case of block copolymer micelles, these parameters can influence the crystallinity of the core, which has implications for drug encapsulation and release. Therefore, in this study, we aimed to determine how the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers contributes to the crystallinity of their hydrophobic PCL micelle cores. Using a library of PEG-b-PCL copolymers with PEG number-average molecular weight (Mn) values of 2, 5, and 10 kDa and weight fractions of PCL (fPCL) ranging from 0.11 to 0.67, the thermal behaviour and morphology were studied in blends, bulk, and micelles using differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD), and Synchrotron wide-angle X-ray scattering (WAXS). Compared to PEG and PCL homopolymers, the block copolymers displayed reduced crystallinity in the bulk phase and the individual blocks had a large influence on the crystallisation of one another. The fPCL was determined to be the dominant contributor to the extent and order of crystallisation of the two blocks. When fPCL < 0.35, the initial crystallisation of PEG led to an amorphous PCL phase. At fPCL values between 0.35 and 0.65, PEG crystallisation was followed by PCL crystallisation, whereas this behaviour was reversed when fPCL > 0.65. For lyophilised PEG-b-PCL micelles, the crystallinity of the core increased with increasing fPCL, although the core was predominately amorphous for micelles with fPCL < 0.35. These findings contribute to understanding the relationships between copolymer microstructure and micelle core crystallinity that are important for the design and performance of micellar drug delivery systems, and the broader application of polymer micelles.

15.
Food Chem ; 375: 131805, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942502

RESUMO

This study aimed to understand the effect of fatty acid composition and viscosity of vegetable oils on network formation mechanism and physical properties of oleogels. To this purpose, 12 oleogels were prepared, by choosing 6 seed oils and two waxes, at a fixed oleogelator concentration (6%). The modified Avrami model correctly describes the crystallization profile (R2 > 0.98) and the oil type did not affect the Avrami index that ranged from 1.00 to 1.43. Independently from oleogelator, rice and hemp seed oils followed a 3-D network formation mechanism, while almond oil a 2-D mechanism. The strength and yield stress of carnauba wax oleogels increased with increasing saturated fatty acid amount, while in beeswax-based oleogels a more interconnected structure was associated with the length of the saturated fatty acid chain. Thus, the oleogels formation mechanism was closely related to the chemical composition of the solvent, even in highly monounsaturated or polyunsaturated oils.


Assuntos
Ácidos Graxos , Ceras , Cristalização , Cinética , Compostos Orgânicos , Óleos de Plantas
16.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286174

RESUMO

For environmental applications, nanosized TiO2-based materials are known as the most important photocatalyst and are intensively studied for their advantages such as their higher activity, lower price, and chemical and photoresist properties. Zn or Cu doped TiO2 nanoparticles with anatase crystalline structure were synthesized by sol-gel process. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent, and a hydrolysing agent (ammonia-containing water) was added to obtain a solution with pH 10. The gels were characterized by TG/DTA analysis, SEM, and XPS. Based on TG/DTA results, the temperature of 500 °C was chosen for processing the powders in air. The structure of the samples thermally treated at 500 °C was analysed by XRD and the patterns show crystallization in a single phase of TiO2 (anatase). The surface of the samples and the oxidation states was investigated by XPS, confirming the presence of Ti, O, Zn and Cu. The antibacterial activity of the nanoparticle powder samples was verified using the gram-positive bacterium Staphylococcus aureus. The photocatalytic efficiency of the doped TiO2 nanopowders for degradation of methyl orange (MO) is here examined in order to evaluate the potential applications of these materials for environmental remediation.

17.
Data Brief ; 41: 107906, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35242905

RESUMO

Data presented on this paper are from the collection on the experimental site during a 12 months period, corresponding to the two seasons of the year. The site is located in the city of Douala in Cameroon, in a hot and humid zone. The experimental premises are located above the ground floor of a storey-building. They are built of 20 cm thick hollow breezeblocks with interior and exterior cement plastering, and they consist of the following: an open uninhabited room; a closed uninhabited room; and an inhabited room. The data acquisition system was achieved by the thermo-hygrometers and the anemometer placed in the rooms in accordance with the ASHRAE 55 standard [1], on instruments for measuring thermal comfort parameters in buildings. Collected data consists of the following: temperature, relative humidity and air velocity outside the site; the temperature and relative humidity inside the different rooms. These parameters are collected with a one-hour time step. The matlab software is used to calculate the maximum, minimum, average and standard deviation for each measured parameter. several areas are used for data processing: the search for causal links between the climatic parameters of the site, and those of the indoor environments of the buildings; data prediction on a one year's history basis; the impact of each experimental scenario on the thermal behaviour of the room; the assessment of the heat transfer in the room; the evaluation of the potential for energy savings in the room.

18.
Materials (Basel) ; 14(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34300819

RESUMO

In the field of non-oxide ceramic composites, and by using the polymer-derived ceramic route, understanding the relationship between the thermal behaviour of the preceramic polymers and their structure, leading to the mechanisms involved, is crucial. To investigate the role of Zr on the fabrication of ZrC-SiC composites, linear or hyperbranched polycarbosilanes and polyzirconocarbosilanes were synthesised through either "click-chemistry" or hydrosilylation reactions. Then, the thermal behaviours of these polymeric structures were considered, notably to understand the impact of Zr on the thermal path going to the composites. The inorganic materials were characterised by thermogravimetry-mass spectrometry (TG-MS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). To link the macromolecular structure to the organisation involved during the ceramisation process, eight temperature domains were highlighted on the TG analyses, and a four-step mechanism was proposed for the polymers synthesised by a hydrosilylation reaction, as they displayed better ceramic yields. Globally, the introduction of Zr in the polymer had several effects on the temperature fragmentation mechanisms of the organometallic polymeric structures: (i) instead of stepwise mass losses, continuous fragment release prevailed; (ii) the stability of preceramic polymers was impacted, with relatively good ceramic yields; (iii) it modulated the chemical composition of the generated composites as it led, inter alia, to the consumption of free carbon.

19.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808127

RESUMO

The public pressure about the problems derived from the environmental issues increasingly pushes the research areas, of both industrial and academic sectors, to design material architectures with more and more foundations and reinforcements derived from renewable sources. In these efforts, researchers make extensive and profound use of thermal analysis. Among the different techniques available, thermal analysis offers, in addition to high accuracy in the measurement, smartness of execution, allowing to obtain with a very limited quantity of material precious information regarding the property-structure correlation, essential not only in the production process, but overall, in the design one. Thus, techniques such as differential scanning calorimetry (DSC), differential thermal analysis (DTA), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were, are, and will be used in this transition from fossil feedstock to renewable ones, and in the development on new manufacturing processes such as those of additive manufacturing (AM). In this review, we report the state of the art of the last two years, as regards the use of thermal techniques in biopolymer design, polymer recycling, and the preparation of recyclable polymers as well as potential tools for biopolymer design in AM. For each study, we highlight how the most known thermal parameters, namely glass transition temperature (Tg), melting temperature (Tf), crystallization temperature (Tc) and percentage (%c), initial decomposition temperature (Ti), temperature at maximum mass loss rate (Tm), and tan δ, helped the researchers in understanding the characteristics of the investigated materials and the right way to the best design and preparation.

20.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009346

RESUMO

Coal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with H3PO4. The thermal behaviour of the obtained geopolymers was studied between room temperature and 600 °C by Thermogravimetry-Differential Thermal Analysis (TG-DTA) and the phase composition after 28 days of curing at room temperature was analysed by X-ray diffraction (XRD). During heating, the acid-activated geopolymers exhibited similar behaviour to alkali-activated geopolymers. All of the samples showed endothermic peaks up to 300 °C due to water evaporation, while the samples with mine tailings showed two significant exothermic peaks above 400 °C due to oxidation reactions. The phase analysis confirmed the dissolution of the aluminosilicate sources in the presence of H3PO4 by significant changes in the XRD patterns of the raw materials and by the broadening of the peaks because of typically amorphous silicophosphate (Si-P), aluminophosphate (Al-P) or silico-alumino-phosphate (Si-Al-P) formation. The phases resulted from geopolymerisation are berlinite (AlPO4), brushite (CaHPO4∙2H2O), anhydrite (CaSO4) or ettringite as AFt and AFm phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA