Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20232305, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228180

RESUMO

Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.


Assuntos
Apicomplexa , Borboletas , Calor Extremo , Parasitos , Animais , Humanos , Borboletas/fisiologia , Interações Hospedeiro-Parasita , Apicomplexa/fisiologia
2.
J Invertebr Pathol ; 204: 108106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621520

RESUMO

The thermal environment is a critical determinant of outcomes in host-pathogen interactions, yet the complexities of this relationship remain underexplored in many ecological systems. We examined the Thermal Mismatch Hypothesis (TMH) by measuring phenotypic variation in individual thermal performance profiles using a model system of two species of entomopathogenic fungi (EPF) that differ in their ecological niche, Metarhizium brunneum and M. flavoviride, and a warm-adapted model host, the mealworm Tenebrio molitor. We conducted experiments across ecologically relevant temperatures to determine the thermal performance curves for growth and virulence, measured as % survival, identify critical thresholds for these measures, and elucidate interactive host-pathogen effects. Both EPF species and the host exhibited a shared growth optima at 28 °C, while the host's growth response was moderated in sublethal pathogen infections that depended on fungus identity and temperature. However, variances in virulence patterns were different between pathogens. The fungus M. brunneum exhibited a broader optimal temperature range (23-28 °C) for virulence than M. flavoviride, which displayed a multiphasic virulence-temperature relationship with distinct peaks at 18 and 28 °C. Contrary to predictions of the TMH, both EPF displayed peak virulence at the host's optimal temperature (28 °C). The thermal profile for M. brunneum aligned more closely with that of T. molitor than that for M. flavoviride. Moreover, the individual thermal profile of M. flavoviride closely paralleled its virulence thermal profile, whereas the virulence thermal profile of M. brunneum did not track with its individual thermal performance. This suggests an indirect, midrange (23 °C) effect, where M. brunneum virulence exceeded growth. These findings suggest that the evolutionary histories and ecological adaptations of these EPF species have produced distinct thermal niches during the host interaction. This study contributes to our understanding of thermal ecology in host-pathogen interactions, underpinning the ecological and evolutionary factors that shape infection outcomes in entomopathogenic fungi. The study has ecological implications for insect population dynamics in the face of a changing climate, as well as practically for the use of these organisms in biological control.


Assuntos
Interações Hospedeiro-Patógeno , Metarhizium , Tenebrio , Animais , Metarhizium/patogenicidade , Metarhizium/fisiologia , Tenebrio/microbiologia , Virulência , Temperatura , Controle Biológico de Vetores
3.
J Therm Biol ; 123: 103917, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991264

RESUMO

Global warming poses a threat to lizard populations by raising ambient temperatures above historical norms and reducing thermoregulation opportunities. Whereas the reptile fauna of desert systems is relatively well studied, the lizard fauna of saline environments has not received much attention and-to our knowledge-thermal ecology and the effects of global warming on lizards from saline environments have not been yet addressed. This pioneer study investigates the thermal ecology, locomotor performance and potential effects of climate warming on Liolaemus ditadai, a lizard endemic to one of the largest salt flats on Earth. We sampled L. ditadai using traps and active searches along its known distribution, as well as in other areas within Salinas Grandes and Salinas de Ambargasta, where the species had not been previously recorded. Using ensemble models (GAM, MARS, RandomForest), we modeled climatically suitable habitats for L. ditadai in the present and under a pessimistic future scenario (SSP585, 2070). L. ditadai emerges as an efficient thermoregulator, tolerating temperatures near its upper thermal limits. Our ecophysiological model suggests that available activity hours predict its distribution, and the projected temperature increase due to global climate change should minimally impact its persistence or may even have a positive effect on suitable thermal habitat. However, this theoretical increase in habitat could be linked to the distribution of halophilous scrub in the future. Our surveys reveal widespread distribution along the borders of Salinas Grandes and Salinas de Ambargasta, suggesting a potential presence along the entire border of both salt plains wherever halophytic vegetation exists. Optimistic model results, extended distribution, and no evidence of flood-related adverse effects offer insights into assessing the conservation status of L. ditadai, making it and the Salinas Grandes system suitable models for studying lizard ecophysiology in largely unknown saline environments.


Assuntos
Lagartos , Animais , Lagartos/fisiologia , Argentina , Regulação da Temperatura Corporal , Extremófilos/fisiologia , Ecossistema , Aquecimento Global , Mudança Climática , Modelos Biológicos , Temperatura Alta
4.
Ecol Lett ; 26(8): 1432-1451, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37303268

RESUMO

Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.


Assuntos
Ecossistema , Simbiose , Simbiose/fisiologia , Temperatura , Aquecimento Global , Fenótipo
5.
Mol Ecol ; 32(12): 3340-3351, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946891

RESUMO

The outcome of natural enemy attack in insects is commonly impacted by the presence of defensive microbial symbionts residing within the host. The thermal environment is a factor known to affect symbiont-mediated traits in insects. Lower temperatures, for instance, have been shown to reduce Spiroplasma-mediated protection in Drosophila. Our understanding of protective symbiosis requires a deeper understanding of environment-symbiont-protection links. Here, we dissect the effect of the thermal environment on Spiroplasma-mediated protection against Leptopilina boulardi in Drosophila melanogaster by examining the effect of temperature before, during and after wasp attack on fly survival and wasp success. We observed that the developmental temperature of the mothers of attacked larvae, but not the temperature of the attacked larvae themselves during or after wasp attack, strongly determines the protective influence of Spiroplasma. Cooler maternal environments were associated with weaker Spiroplasma protection of their progeny. The effect of developmental temperature on Spiroplasma-mediated protection is probably mediated by a reduction in Spiroplasma titre. These results indicate that historical thermal environment is a stronger determinant of protection than current environment. Furthermore, protection is a character with transgenerational nongenetic variation probably to produce complex short-term responses to selection. In addition, the cool sensitivity of the Spiroplasma-Drosophila symbioses contrasts with the more common failure of symbioses at elevated temperatures, indicating a need to understand the mechanistic basis of low temperature sensitivity on this symbiosis.


Assuntos
Spiroplasma , Vespas , Animais , Vespas/fisiologia , Drosophila melanogaster/genética , Drosophila , Larva/fisiologia , Temperatura , Simbiose
6.
J Anim Ecol ; 92(9): 1759-1770, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438871

RESUMO

Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.


El cambio climático representa una grave amenaza para muchos taxones, con un aumento de las temperaturas medias y la frecuencia de eventos climáticos extremos pronosticados. Los insectos pueden responder a las altas temperaturas mediante comportamientos, como inclinar sus alas fuera del alcance del sol o buscar microclimas frescos locales para termorregular, o a través de la tolerancia fisiológica. En una comunidad de mariposas en Panamá, comparamos la capacidad de las mariposas adultas de 54 especies para controlar su temperatura corporal en un rango de temperaturas del aire (capacidad de amortiguación térmica), así como evaluar el máximo térmico crítico para un subconjunto de 24 especies. La capacidad de amortiguación térmica y la tolerancia se influenciaron por la familia, la longitud del ala y el colour del ala; con Pieridae y mariposas grandes o de colour más oscuro teniendo la capacidad de amortiguación térmica más fuerte, pero Hesperiidae, mariposas pequeñas y de colour más oscuro tolerando las temperaturas más altas. Identificamos una relación entre la capacidad de amortiguación térmica y la tolerancia fisiológica, en la que las especies con mayores capacidades de amortiguación térmica tenían una menor tolerancia térmica, y viceversa. Esta interacción implica que las especies con temperaturas corporales más estables en el campo pueden ser más vulnerables a los aumentos en las temperaturas ambientales, por ejemplo, las olas de calor asociadas con el cambio climático actual. Nuestra investigación demuestra que las especies tropicales emplean diversas estrategias de termorregulación, las cuales también se reflejan en su sensibilidad a las temperaturas extremas.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Temperatura , Temperatura Alta , Temperatura Baixa , Regulação da Temperatura Corporal , Mudança Climática
7.
J Therm Biol ; 113: 103544, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055103

RESUMO

Ectothermic vertebrates, e.g. fish, maintain their body temperature within a specific physiological range mainly through behavioural thermoregulation. Here, we characterise the presence of daily rhythms of thermal preference in two phylogenetically distant and well-studied fish species: the zebrafish (Danio rerio), an experimental model, and the Nile tilapia (Oreochromis niloticus), an aquaculture species. We created a non-continuous temperature gradient using multichambered tanks according to the natural environmental range for each species. Each species was allowed to freely choose their preferred temperature during the 24h cycle over a long-term period. Both species displayed strikingly consistent temporal daily rhythms of thermal preference with higher temperatures being selected during the second half of the light phase and lower temperatures at the end of the dark phase, with mean acrophases at Zeitgeber Time (ZT) 5.37 h (zebrafish) and ZT 12.5 h (tilapia). Interestingly, when moved to the experimental tank, only tilapia displayed consistent preference for higher temperatures and took longer time to establish the thermal rhythms. Our findings highlight the importance of integrating both light-driven daily rhythm and thermal choice to refine our understanding of fish biology and improve the management and welfare of the diversity of fish species used in research and food production.


Assuntos
Ciclídeos , Tilápia , Animais , Peixe-Zebra , Ciclídeos/fisiologia , Temperatura , Ritmo Circadiano/fisiologia
8.
J Fish Biol ; 102(5): 1000-1016, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880500

RESUMO

Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.


Assuntos
Aclimatação , Peixes , Animais , Peixes/fisiologia , Temperatura , Aclimatação/fisiologia , Evolução Biológica , Adaptação Fisiológica , Mudança Climática
9.
Glob Chang Biol ; 28(18): 5385-5398, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35758068

RESUMO

Alterations in body size can have profound impacts on an organism's life history and ecology with long-lasting effects that span multiple biological scales. Animal body size is influenced by environmental drivers, including climate change and land use change, the two largest current threats to biodiversity. Climate warming has led to smaller body sizes of many species due to impacts on growth (i.e., Bergmann's rule and temperature-size rule). Conversely, urbanization, which serves as a model for investigating the effects of land use changes, has largely been demonstrated to cause size increases, but few studies have examined the combined influences of climate and land use changes on organism size. We present here the background theory on how each of these factors is expected to influence body size, summarize existing evidence of how size has recently been impacted by climate and land use changes, and make several recommendations to guide future research uniting these areas of focus. Given the rapid pace of climate change and urbanization, understanding the combined effects of climate and land use changes on body size is imperative for biodiversity preservation.


Assuntos
Biodiversidade , Mudança Climática , Animais , Tamanho Corporal , Ecossistema , Temperatura , Urbanização
10.
Glob Chang Biol ; 28(3): 782-796, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741780

RESUMO

As effects of climate change intensify, there is a growing need to understand the thermal properties of landscapes and their influence on wildlife. A key thermal property of landscapes is vegetation structure and composition. Management approaches can alter vegetation and consequently the thermal landscape, potentially resulting in underappreciated consequences for wildlife thermoregulation. Consideration of spatial scale can clarify how management overlaid onto existing vegetation patterns affects thermal properties of landscapes relevant to wildlife. We examined effects of temperature, fire management, and vegetation structure on multi-scale habitat selection of an ectothermic vertebrate (the turtle Terrapene carolina triunguis) in the Great Plains of the central United States by linking time-since-fire data from 18 experimental burn plots to turtle telemetry locations and thermal and vegetation height data. Within three 60-ha experimental landscapes, each containing six 10-ha sub-blocks that are periodically burned, we found that turtles select time-since-fire gradients differently depending on maximum daily ambient temperature. At moderate temperatures, turtles selected sub-blocks with recent (<1 year) time-since-fire, but during relatively hot and cool conditions, they selected sub-blocks with later (2-3 year) time-since-fire that provided thermal buffering compared with recently burned sub-blocks. Within 10-ha sub-blocks, turtles selected locations with taller vegetation during warmer conditions that provided thermal buffering. Thermal performance curves revealed that turtle activity declined as temperatures exceeded ~24-29°C, and on "heat days" (≥29°C) 73% of turtles were inactive compared with 37% on non-heat days, emphasizing that thermal extremes may lead to opportunity costs (i.e., foregone benefits turtles could otherwise accrue if active). Our results indicate that management approaches that promote a mosaic of vegetation heights, like spatiotemporally dynamic fire, can provide thermal refuges at multiple spatial scales and thus be an actionable way to provide wildlife with multiple thermal options in the context of ongoing and future climate change.


Assuntos
Incêndios , Tartarugas , Animais , Animais Selvagens , Mudança Climática , Ecossistema , Tartarugas/fisiologia
11.
J Therm Biol ; 103: 103165, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027185

RESUMO

Whereas the vast majority of animals in nature experience daily or seasonal thermal fluctuations, most laboratory experiments use constant temperatures. We examined the effect of fluctuating temperatures on reproduction and survival under starvation, two important components of fitness. We used the red flour beetle as a model organism, which is a significant pest in grain mills around the world. Fluctuations around the optimal temperature were always negative for the adult survival under starvation. The effect of thermal fluctuations on the number of offspring reaching adulthood was negative as well but increased with the extent of exposure. It was the strongest when the adult parents were kept and the offspring were raised under fluctuating temperatures. However, the later the offspring were exposed to fluctuations during their development, the weaker the effect of fluctuating temperatures was. Moreover, raising the parents under fluctuating temperatures but keeping them after pupation at constant temperatures fully alleviated the negative effects of fluctuations on the offspring. Finally, we demonstrate that keeping the parents a few days under fluctuating temperatures is required to induce negative effects on the number of offspring reaching adulthood. Our study disentangles between the effects of thermal fluctuations experienced during the parental and offspring stage thus contributing to the ongoing research of insects under fluctuating temperatures.


Assuntos
Besouros , Animais , Feminino , Longevidade , Masculino , Reprodução , Inanição , Temperatura
12.
J Therm Biol ; 103: 103152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027202

RESUMO

Functional traits are those characteristics of organisms that influence the ability of a species to develop in a habitat and persist in the face of environmental changes. The traits are often affected by a multiplicity of species-dependent and external factors. Our objective was to investigate thermal biology of Liolaemus ruibali in a high altitude cold desert at the arid Puna region, Argentina. We address the following question: do sex and seasonal variations in environmental temperature induce changes in the ecophysiological traits? We measured and compared the operative temperatures between fall and spring; and between sexes and seasons, we compared the ecophysiological traits of lizards, microenvironmental temperatures and thermoregulatory behavior. Air and operative temperatures were different between seasons. We found an effect of season-sex interaction on field body temperatures, preferred temperatures, panting threshold and thermal quality. The voluntary and critical temperatures presented seasonal variation in relation to changes in environmental temperatures, suggesting thermal acclimatization. We note behavioral changes between seasons, with the substrate being the main resource for gaining heat in spring. We conclude that Liolaemus ruibali is an efficient thermoregulator; it is a eurythermic lizard and presents phenotypic plasticity in different ecophysiological and behavioral traits induced by sex and seasonality. In addition, we predict that this population could buffer the effects of projected global warming scenarios.


Assuntos
Altitude , Regulação da Temperatura Corporal/fisiologia , Aquecimento Global , Lagartos/fisiologia , Estações do Ano , Aclimatação , Adaptação Fisiológica , Animais , Argentina , Temperatura Corporal , Temperatura
13.
Ecol Lett ; 24(1): 27-37, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33022129

RESUMO

While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host-pathogen systems. Here, we employ a three-step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity-saturated conditions. Yet, a 3-year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range-wide, year-round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range-wide disease outbreaks and population declines.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Microclima , Micoses/prevenção & controle , Micoses/veterinária , Urodelos
14.
Ecol Lett ; 24(2): 170-185, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33289263

RESUMO

In cold environments ectotherms can be dormant underground for long periods. In 1941 Cowles proposed an ecological trade-off involving the depth at which ectotherms overwintered: on warm days, only shallow reptiles could detect warming soils and become active; but on cold days, they risked freezing. Cowles discovered that most reptiles at a desert site overwintered at shallow depths. To extend his study, we compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and physiological data, and simulated consequences of overwintering at fixed depths. In warm localities shallow ectotherms have lowest energy costs and largest reserves in spring, but in cold localities, they risk freezing. Ectotherms shifting hourly to the coldest depth potentially reduce energy expenses, but paradoxically sometimes have higher expenses than those at fixed depths. Biophysical simulations for a desert site predict that shallow ectotherms have increased opportunities for mid-winter activity but need to move deep to digest captured food. Our simulations generate testable predictions to eco-physiological questions but rely on physiological responses to acute cold rather than to natural cooling profiles. Furthermore, natural-history data to test most predictions do not exist. Thus, our simulation approach uncovers knowledge gaps and suggests research agendas for studying ectotherms overwintering underground.


Assuntos
Temperatura Baixa , Solo , Congelamento , Estações do Ano , Temperatura
15.
Am Nat ; 197(1): 75-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417520

RESUMO

AbstractAn extension of the climate variability hypothesis is that relatively stable climate, such as that of the tropics, induces distinct thermal bands across elevation that render dispersal over tropical mountains difficult compared with temperate mountains. Yet ecosystems are not thermally static in space-time, especially at small scales, which might render some mountains greater thermal isolators than others. Here we provide an extensive investigation of temperature drivers from fine to coarse scales, and we demonstrate that the degree of similarity in temperatures at high and low elevations on mountains is driven by more than just absolute mountain height and latitude. We compiled a database of 29 mountains spanning six continents to characterize thermal overlap by vertically stratified microhabitats and biomes and owing to seasonal changes in foliage, demonstrating via mixed effects modeling that micro- and mesogeography more strongly influence thermal overlap than macrogeography. Impressively, an increase of 1 m of vertical microhabitat height generates an increase in overlap equivalent to a 5.26° change in latitude. In addition, forested mountains have reduced thermal overlap-149% lower-relative to nonforested mountains. We provide evidence in support of a climate hypothesis that emphasizes microgeography as a determinant of dispersal, demographics, and behavior, thereby refining the classical theory of macroclimate variability as a prominent driver of biogeography.


Assuntos
Altitude , Clima , Ecossistema , Geografia , Microclima , Temperatura
16.
Mol Ecol ; 30(5): 1336-1344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428287

RESUMO

The outcome of natural enemy attack in insects is commonly influenced by the presence of protective symbionts in the host. The degree to which protection functions in natural populations, however, will depend on the robustness of the phenotype and symbiosis to variation in the abiotic environment. We studied the impact of a key environmental parameter-temperature-on the efficacy of the protective effect of the symbiont Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina heterotoma. In addition, we investigated the thermal sensitivity of the symbiont's vertical transmission, which may be a key determinant of the ability of the symbiont to persist. We found that vertical transmission was more robust than previously considered, with Spiroplasma being maintained at 25°C, at 18°C and with 18/15°C diurnal cycles, with rates of segregational loss only increasing at 15°C. Protection against wasp attack was ablated before symbiont transmission was lost, with the symbiont failing to rescue the fly host at 18°C. We conclude that the presence of a protective symbiosis in natural populations cannot be simply inferred from the presence of a symbiont whose protective capacity has been tested under narrow controlled conditions. More broadly, we argue that the thermal environment is likely to represent an important determinant of the evolutionary ecology of defensive symbioses in natural environments, potentially driving seasonal, latitudinal and altitudinal variation in symbiont frequency.


Assuntos
Spiroplasma , Vespas , Animais , Evolução Biológica , Drosophila , Spiroplasma/genética , Simbiose
17.
Glob Chang Biol ; 27(19): 4469-4480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170603

RESUMO

The frequency and severity of both extreme thermal events and disease outbreaks are predicted to continue to shift as a consequence of global change. As a result, species persistence will likely be increasingly dependent on the interaction between thermal stress and pathogen exposure. Missing from the intersection between studies of infectious disease and thermal ecology, however, is the capacity for pathogen exposure to directly disrupt a host's ability to cope with thermal stress. Common sources of variation in host thermal performance, which are likely to interact with infection, are also often unaccounted for when assessing either the vulnerability of species or the potential for disease spread during extreme thermal events. Here, we describe how infection can directly alter host thermal limits, to a degree that exceeds the level of variation commonly seen across species large geographic distributions and that equals the detrimental impact of other ecologically relevant stressors. We then discuss various sources of heterogeneity within and between populations that are likely to be important in mediating the impact that infection has on variation in host thermal limits. In doing so we highlight how infection is a widespread and important source of variation in host thermal performance, which will have implications for both the persistence and vulnerability of species and the dynamics and transmission of disease in a more thermally extreme world.


Assuntos
Doenças Transmissíveis , Ecologia , Doenças Transmissíveis/epidemiologia , Humanos
18.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125216

RESUMO

A key challenge for linking experiments of organisms performed in a laboratory environment to their performance in more complex environments is to determine thermal differences between a laboratory and the energetically complex terrestrial ecosystem. Studies performed in the laboratory do not account for many factors that contribute to the realized temperature of an organism in its natural environment. This can lead to modelling approaches that use experimentally derived data to erroneously link the air temperature in a laboratory to air temperatures in energetically heterogenous ecosystems. Traditional solutions to this classic problem assume that animals in an isotropic, isothermal chamber behave either as pure heterothermic ectotherms (body temperature=chamber temperature) or homeothermic endotherms (body temperature is entirely independent of chamber temperature). This approach may not be appropriate for endothermic insects which exist as an intermediate between strongly thermoregulating endotherms and purely thermoconforming species. Here, we use a heat budget modelling approach for the honey bee Apis mellifera to demonstrate that the unique physiology of endothermic insects may challenge many assumptions of traditional biophysical modelling approaches. We then demonstrate under modelled field-realistic scenarios that an experiment performed in a laboratory has the potential to both overestimate and underestimate the temperature of foraging bees when only air temperature is considered.


Assuntos
Regulação da Temperatura Corporal , Ecossistema , Animais , Abelhas , Meio Ambiente , Temperatura Alta , Temperatura
19.
Biol Lett ; 17(3): 20200813, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33757295

RESUMO

Rapid climate change across the globe is having dramatic effects on wildlife. Responses of organisms to shifting thermal conditions often include physiological and behavioural accommodations, but to date these have been largely viewed and studied as naturally evolved phenomena (e.g. heat avoidance, sweating, panting) and not necessarily as strategies where animals exploit other anthropogenic conditions or resources. Moreover, the degree to which native versus introduced species show thermal plasticity has generated much conservation and ecological interest. We previously have observed introduced rosy-faced lovebirds (Agapornis roseicollis) perching in the relief-air vents on building faces in the Phoenix, Arizona, USA, metropolitan area, but doing so only during summer. Here, we show that such vent-perching events are significantly associated with extreme outdoor summer temperatures (when daily local highs routinely exceed 40°C). In fact, the temperature threshold at which we detected lovebirds starting to perch in cool air vents mirrors the upper range of the thermoneutral zone for this species. These results implicate novel, facultative use of an anthropogenic resource-industrial air-conditioning systems-by a recently introduced species (within the last 35 years) to cool down and survive extremely hot conditions in this urban 'heat-island' environment.


Assuntos
Agapornis , Espécies Introduzidas , Ar Condicionado , Animais , Aves , Temperatura Baixa , Temperatura Alta
20.
J Therm Biol ; 101: 103094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879912

RESUMO

Sympatric lizard species present convenient models for studying differentiation in thermal behavior and the role of morphological differences in their thermal biology. Here we studied the thermal biology of two sympatric lizard species which occur sympatrically in the Phrygian Valley of Western Anatolia. These two species differ in body size, with Lacerta diplochondrodes being larger than Parvilacerta parva. The surface body temperatures of the individuals belonging to both species were recorded when active in the field. Additionally, several environmental parameters including solar radiation, substrate temperature, air temperature and wind speed were monitored to investigate the relative effects of these abiotic parameters on the thermal biology of the two species. The surface body temperature and temperature excess (difference between body and substrate temperature) of the two species, while being relatively close to each other, showed seasonal differences. Solar radiation, substrate temperature and air temperature were the main factors influencing their thermal biology. Additionally, although body size did not have a direct effect on body temperature or temperature excess, the interaction between body size and solar radiation on temperature excess was significant. In conclusion, our study partially supports the conservation of body temperature of related lizard species.


Assuntos
Regulação da Temperatura Corporal , Lagartos/fisiologia , Animais , Tamanho Corporal , Temperatura Corporal , Feminino , Masculino , Modelos Teóricos , Estações do Ano , Luz Solar , Temperatura , Turquia , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA