Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(19): e202304126, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38221894

RESUMO

Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.


Assuntos
Glicosídeo Hidrolases , Imino Açúcares , Humanos , Glicosídeo Hidrolases/metabolismo , Imino Açúcares/química , alfa-Manosidase , Relação Estrutura-Atividade
2.
Biotechnol Bioeng ; 121(9): 2728-2741, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837223

RESUMO

Peroxyacid synthesis is the first step in Prilezhaev epoxidation, which is an industrial method to form epoxides. Motivated by the development of a kinetic model as a tool for solvent selection, the effect of solvent type and acid chain length on the lipase-catalyzed peroxyacid synthesis was studied. A thermodynamic activity-based ping-pong kinetic expression was successfully applied to predict the effect of the reagent loadings in hexane. The activity-based reaction quotients provided a prediction of solvent-independent equilibrium constants. However, this strategy did not achieve satisfactory estimations of initial rates in solvents of higher polarity. The lack of compliance with some assumptions of this methodology could be confirmed through molecular dynamics calculations i.e. independent solvation energies and lack of solvent interaction with the active site. A novel approach is proposed combining the activity-based kinetic expression and the free binding energy of the solvent with the active site to predict kinetics upon solvent change. Di-isopropyl ether generated a strong interaction with the enzyme's active site, which was detrimental to kinetics. On the other hand, toluene or limonene gave moderate interaction with the active site rendering improved catalytic yield compared with less polar solvents, a finding sharpened when peroctanoic acid was produced.


Assuntos
Lipase , Simulação de Dinâmica Molecular , Solventes , Solventes/química , Lipase/química , Lipase/metabolismo , Cinética , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
3.
Mol Pharm ; 21(4): 1900-1918, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469754

RESUMO

The use of amorphous solid dispersions (ASDs) in commercial drug products has increased in recent years due to the large number of poorly soluble drugs in the pharmaceutical pipeline. However, the release behavior of ASDs is complex and remains not well understood. Often, the drug release from ASDs is rapid and complete at lower drug loadings (DLs) but becomes slow and incomplete at higher DLs. The DL where release becomes hindered is termed the limit of congruency (LoC). Currently, there are no approaches to predict the LoC. However, recent findings show that one potential cause leading to the LoC is a change in phase morphology after water-induced phase separation at the ASD/solution interface. In this study, the phase behavior of ASDs in contact with aqueous solutions was described thermodynamically by constructing experimental and computational ternary phase diagrams, and these were used to predict morphology changes and ultimately the LoC. Experimental ternary phase diagrams were obtained by equilibrating ASD/water mixtures over time. Computational ternary phase diagrams were obtained by Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). The morphology of the hydrophobic phase was studied with fluorescence confocal microscopy. It was demonstrated that critical point (plait point) composition approximately corresponded to the ASD DL, where the hydrophobic phase, formed during phase separation, became interconnected and hindered ASD release. This work provides mechanistic insights into the ASD release behavior and highlights the potential of in silico ASD design using phase diagrams.


Assuntos
Água , Solubilidade , Liberação Controlada de Fármacos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos
4.
Cryobiology ; 115: 104905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759911

RESUMO

Vitrification under isochoric (constant-volume or volumetrically confined) conditions has emerged as an intriguing new cryopreservation modality, but the physical complexities of the process confound straight-forward interpretation of experimental results. In particular, the signature pressure-based ice detection used in many isochoric techniques becomes paradoxical during vitrification, wherein the emergence of a sharp increase in pressure reliably indicates the presence of ice, but avoidance of this increase does not necessarily indicate its absence. This phenomenon arises from the rich interplay between thermochemical and thermovolumetric effects in isochoric systems, and muddies efforts to confirm the degree to which a sample has vitrified. In this work, we seek to aid interpretation of isochoric vitrification experiments by calculating thermodynamic limits on the maximum amount of ice that may form without being detected by pressure, and by clarifying the myriad physical processes at play. Neglecting kinetic effects, we develop a simplified thermodynamic model accounting for thermal contraction, cavity formation, ice growth, solute ripening, and glass formation, we evaluate it for a range of chamber materials and solution compositions, and we validate against the acutely limited data available. Our results provide both counter-intuitive insights- lower-concentration solutions may contract less while producing more pressure-undetectable ice growth for example- and a general phenomenological framework by which to evaluate the process of vitrification in isochoric systems. We anticipate that the model herein will enable design of future isochoric protocols with minimized risk of pressure-undetectable ice formation, and provide a thermodynamic foundation from which to build an increasingly rigorous multi-physics understanding of isochoric vitrification.


Assuntos
Criopreservação , Gelo , Pressão , Termodinâmica , Vitrificação , Criopreservação/métodos , Crioprotetores/farmacologia
5.
J Environ Manage ; 370: 122561, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305873

RESUMO

This work proves that nitric oxide (NO) can be successfully recovered from hydrogen flue gas streams in nitric acid, opening new pathways for NO control in combustion streams. Recovering NO from hydrogen combustion streams allows for increasing the combustion temperature in the turbine, reducing the fuel consumption per kWh, while obtaining a building block for nitric acid production. The solubility of nitric oxide is determined in amines, ethanol, and nitric acid solutions at a laboratory scale, suitable candidates for nitric oxide absorption. The solubility of nitric oxide in amines and ethanol is very low (0.009 mol/L/bar & 0.018 mol/L/bar respectively) compared with nitric acid (0.23 mol/L/bar), which is in the same range as the solubility of CO2 in amines solutions. Nitric acid, in addition to having good NO solubility, also presents high selectivity towards nitric oxide and easy recovery of nitric oxide by simply raising the temperature. Finally, a fugacity-activity coefficient model combining the Peng-Robinson (PR) equation of state with the Non-Random Two-Liquid (NRTL) activity coefficient model is proposed as a thermodynamic model to represent the NO-HNO3-H2O equilibrium, giving as a result an average absolute deviation between the experimental results and the model predictions of only 5%.

6.
Miner Depos ; 58(4): 731-750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911364

RESUMO

The petrogenesis of extra-large flake graphite is enigmatic. The Bissett Creek graphite deposit, consisting of flake graphite hosted in upper-amphibolite facies quartzofeldspathic gneisses and rare aluminous gneisses, provides an analogue for graphite exploration. In the Bissett Creek gneisses, graphite is homogeneously distributed and composes 2-10 vol. % of the rocks. Disseminated graphite flakes (~ 1 to 6 mm in size) are interleaved with biotite and are petrologically associated with upper-amphibolite facies metamorphic mineral assemblages. Thermobarometry and phase equilibrium modeling yield peak temperatures of > 760 °C at 0.5-0.9 GPa. Whole-rock samples with abundant graphite yield δ13CVPDB from - 28 to - 14‰. δ34SVCDT values of sulfide-bearing samples vary from 10 to 15‰. Sulfur and carbon isotope values are compatible with a biogenic origin, flake graphite probably formed from metamorphism of in situ organic material. However, the variability of δ13C values from the deposit along with graphite microstructures suggest that carbon-bearing metamorphic fluid (or melt) generated during metamorphism may have remobilized carbon resulting in anomalously large to extra-large flake sizes. This may be a common mechanism globally to explain large graphite flake sizes where graphite formed through in situ metamorphism of organic matter is coarsened due to remobilization of CO2-rich fluids (or melt) during high-temperature metamorphism. Supplementary Information: The online version contains supplementary material available at 10.1007/s00126-022-01145-9.

7.
Environ Geochem Health ; 45(6): 2917-2933, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36115000

RESUMO

Arsenic is a pervasive pollutant in groundwater, affecting more than 100 million people in 50 countries, including China. Toxicological analysis of As is complicated because As exists in the environment in a variety of forms and redox states. Here, a thermodynamic equilibrium model was used to calculate As speciation, investigate pathways of As accumulation and assess the risk of adverse health effects from oral ingestion of dissolved As from shallow groundwater in the Poyang Lake area (China). The accumulation of As, Fe, and NH4+ in the studied shallow groundwater was found to be the result of the dissolution of As-containing Fe, and probably Mn, (oxyhydr)oxides under reducing conditions due to excess influx of organic matter into the shallow aquifer. Modeling showed that As(III), which is more toxic than As(V), predominated at nearly all sampling sites, regardless of redox conditions. Arsenic tends to accumulate in the highest concentrations as neutral species (As(OH)30, HAsO20) under Eh < 50 mV. In the lower reaches of the Ganjiang and Xiushui Rivers, an increased non-carcinogenic risk from oral ingestion of As from drinking water was observed. The elevated cancer risk was found to be present throughout the study area. The lower reaches of the Ganjiang and Xiushui Rivers that have been shown to have the highest risk of both non-carcinogenic and carcinogenic adverse health effects are associated with more toxic As(III) species. Given the As speciation and risk profile, it is recommended to introduce strategies to alter redox conditions in shallow groundwater by adopting safer irrigation practices and managing fertilizer applications to avoid the buildup of high As concentrations associated with adverse health effects.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Humanos , Arsênio/toxicidade , Arsênio/análise , Monitoramento Ambiental , Água Subterrânea/análise , Lagos , Medição de Risco , China , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 56(3): 1791-1800, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061374

RESUMO

Iodinated aromatic disinfection byproducts (I-DBPs) are a group of nonregulated but highly toxic DBPs. The formation of I-DBPs is attributed mainly to HOI because it is the most abundant reactive iodine species in chloraminated water. In this study, we used computational modeling of thermodynamics to examine the mechanism of iodination of aromatic contaminants, e.g., dipeptides and phenols. Computational prediction of the energy barriers of the formation of iodinated tyrosylglycine (I-Tyr-Gly) (66.9 kcal mol-1) and hydroxylated Tyr-Gly (OH-Tyr-Gly) (46.0 kcal mol-1) via iodination with HOI favors the formation of OH-Tyr-Gly over I-Tyr-Gly. Unexpectedly, mass spectrometry experiments detected I-Tyr-Gly but not OH-Tyr-Gly, suggesting that I-Tyr-Gly formation cannot be attributed to HOI alone. To clarify this result, we examined the thermodynamic role of the most reactive iodine species H2OI+ in the formation of aromatic I-DBPs under chloramination. Computational modeling of thermodynamic results shows that the formation of a loosely bonded complex of aromatic compounds with H2OI+ is the key step to initiate the iodination process. When H2OI+ serves as an acid catalyst and an iodinating agent, with HOI or H2O acting as a proton acceptor, the energy barrier of I-DBP formation was significantly lower (10.8-13.1 kcal mol-1). Therefore, even with its low concentration, H2OI+ can be involved in the formation of I-DBPs. These results provide insight into the mechanisms of aromatic I-DBP formation and important information for guiding research toward controlling I-DBPs in drinking water.


Assuntos
Desinfetantes , Água Potável , Iodo , Poluentes Químicos da Água , Purificação da Água , Catálise , Desinfecção , Iodetos , Iodo/análise , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(12): 8082-8093, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35634990

RESUMO

Phosphorus (P) losses from flooded soils and subsequent transport to waterways contribute to eutrophication of surface waters. This study evaluated the effectiveness of MnO2 and a zeolite Y amendment in reducing P release from flooded soils and explored the underlying mechanisms controlling P release. Unamended and amended (MnO2 or zeolite, surface-amended at 5 Mg ha-1) soil monoliths from four clayey-alkaline soils were flooded at 22 ± 2 °C for 56 days. Soil redox potential and dissolved reactive P (DRP), pH, and concentrations of major cations and anions in porewater and floodwater were analyzed periodically. Soil P speciation was simulated using Visual MINTEQ at 1, 28, and 56 days after flooding (DAF) and P K-edge X-ray absorption near-edge structure spectroscopy and sequential fractionation at 56 DAF. Porewater DRP increased with DAF and correlated negatively with pe+pH and positively with dissolved Fe. Reductive dissolution of Fe-associated P was the dominant mechanism of flooding-induced P release. The MnO2 amendment reduced porewater DRP by 30%-50% by favoring calcium phosphates (Ca-P) precipitation and delaying the reductive dissolution reactions. In three soils, the zeolite amendment at some DAF increased porewater and/or floodwater DRP through dissolution of Ca-P and thus was not effective in reducing P release from flooded soils.


Assuntos
Poluentes do Solo , Zeolitas , Íons , Manganês , Compostos de Manganês , Óxidos , Fósforo/química , Solo/química , Poluentes do Solo/química
10.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555454

RESUMO

A combined system consisting of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and an organic Rankine cycle (ORC) is provided for automotive applications in this paper. The combined system uses HT-PEMFC stack cathode exhaust gas to preheat the inlet gas and the ORC to recover the waste heat from the stack. The model of the combined system was developed and the feasibility of the model was verified. In addition, the evaluation index of the proposed system was derived through an energy and exergy analysis. The numerical simulation results show that the HT-PEMFC stack, cathode heat exchanger, and evaporator contributed the most to the total exergy loss of the system. These components should be optimized as a focus of future research to improve system performance. The lower current density increased the ecological function and the system efficiency, but reduced the system's net out-power. A higher inlet temperature and higher hydrogen pressures of the stack and the lower oxygen pressure helped improve the system performance. Compared to the HT-PEFC system without an ORC subsystem, the output power of the combined system was increased by 12.95%.


Assuntos
Temperatura Alta , Prótons , Temperatura , Termodinâmica , Hidrogênio
11.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077019

RESUMO

In this paper, a high-temperature proton-exchange membrane fuel cell (HT-PEMFC) system using fluorine-containing polybenzimidazole (6FPBI) composite membranes doped with cross-linkable polymer ionic liquid (cPIL) is developed and studied. The reliability of the model is verified by a comparison with the experimental data. The performance of the HT-PEMFC system using 6FPBI membranes with different levels of cPIL is analyzed. The results show that when the HT-PEMFC uses 6FPBI membranes with a cPIL content of 20 wt % (6FPBI-cPIL 20 membranes), the single cell power density is 4952.3 W·m-2. The excessive cPIL content will lead to HT-PEMFC performance degradation. The HT-PEMFC system using the 6FPBI-cPIL 20 membranes shows a higher performance, even at higher temperatures and pressures, than the systems using 6FPBI membranes. In addition, the parametric study results suggest that the HT-PEMFC system should be operated at a higher inlet temperature and hydrogen pressure to increase system output power and efficiency. The oxygen inlet pressure should be reduced to decrease the power consumption of the ancillary equipment and improve system efficiency. The proposed model can provide a prediction for the performance of HT-PEMFC systems with the application of phosphoric-acid-doped polybenzimidazole (PA-PBI) membranes.


Assuntos
Líquidos Iônicos , Prótons , Membranas Artificiais , Polímeros , Reprodutibilidade dos Testes
12.
Biopolymers ; 112(3): e23422, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33600618

RESUMO

The melting transition of Li-DNA fibers immersed in ethanol-water solutions has been studied using calorimetry and neutron diffraction techniques. The data have been analyzed using the Peyrard-Bishop-Dauxois model to determine the strengths of the intra- and inter-base pair potentials. The data and analysis show that the potentials are weaker than those for DNA in water. They become weaker still and the DNA less stable as the ethanol concentration increases but, conversely, the fibers become more compact and the distances between base pairs become more regular. The results show that the melting transition is relatively insensitive to local confinement and depends more on the interaction between the DNA and its aqueous environment.


Assuntos
DNA/química , Etanol/química , Calorimetria , DNA/metabolismo , Modelos Moleculares , Difração de Nêutrons , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Transição de Fase , Espalhamento a Baixo Ângulo , Soluções/química , Termodinâmica , Temperatura de Transição , Água/química
13.
Geophys Res Lett ; 48(18): e2021GL094143, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35865189

RESUMO

Europa likely contains an iron-rich metal core. For it to have formed, temperatures within Europa reached ≳ 1250 K. Going up to that temperature, accreted chondritic minerals - for example, carbonates and phyllosilicates - would partially devolatilize. Here, we compute the amounts and compositions of exsolved volatiles. We find that volatiles released from the interior would have carried solutes, redox-sensitive species, and could have generated a carbonic ocean in excess of Europa's present-day hydrosphere, and potentially an early CO 2 atmosphere. No late delivery of cometary water was necessary. Contrasting with prior work, CO 2 could be the most abundant solute in the ocean, followed by Ca 2 + , SO 4 2 - , and HCO 3 - . However, gypsum precipitation going from the seafloor to the ice shell decreases the dissolved S/Cl ratio, such that Cl > S at the shallowest depths, consistent with recently inferred endogenous chlorides at Europa's surface. Gypsum would form a 3-10 km thick sedimentary layer at the seafloor.

14.
Environ Res ; 194: 110605, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316230

RESUMO

The Kastanozem complex in the dry steppe of southern Russia underlies an artificially-constructed forest strips. Deep ploughing to a depth of 45 cm was used to process the soil prior to planting. Between 20 and 40 cm depth, soil density was high, 1.57 t m-3. Soil hardness was also high, 440 psi. Soil aggregates greater than 5 cm in size were impermeable to tree roots. The content of such aggregates was high, comprising 35%. The number of tree roots with diameters greater than 0.5 cm that cross the soil profile was as low as 0.15 to 0.3 pcs cm-2. The soil matric potential signifying water availability was low in the vegetation period -0.9 MPa to a depth of 1.0 m. According to modelling experiments, the main salt components in the soil solution drive the transfer of soil organic matter (SOM) and heavy metals (HM). The composition of the soil solution determined by the calcium carbonate equilibrium (CCE) and the association and complexation of ions. ION-3 software was used to calculate the ion equilibrium in the soil solution. Macro-ions Cа2+, Mg2+, SO42-, and CO32- partly bonded as ion pairs. Oversaturation of the soil solution with CaCO3 was calculated according to the analytical content of macro-ion, which was high up to 1000 units, and its value decreased in response to ionic strength, activity, association, complexation, and thermodynamic equilibrium of macro-ions in the soil solution. Oversaturation calculated for Salic Solonetz and Gleyic Solonetz soil solutions was small considering the SOM content. Calculations indicate the profile and lateral loss of C from the soil to the vadose zone. The content of Pb in the soil solution was calculated sirca 75%-80%. The calculated coefficient of Pb2+ association was as high as 52.0. The probability of Pb passivation by SOM in the Kastanozem complex was significant. The probability of uncontrolled transfer and accumulation of HM in the soil and vadose zone was high. Biogeosystem Technique (BGT*) transcendental methodology, an innovative methodology created for stable geomorphological system formation to achieve sustainable agriculture and silviculture, was applied. The BGT* elements were: intra-soil milling of the 30-60 cm soil layer for geophysical conditioning; intra-soil continuously-discrete pulse watering for plants and trees to improve the hydrologic regime. The BGT* methodology reduced HM mobility, controlled biodegradation, enriched nutrient biogeochemical cycling, increased C content, increased soil productivity, and reversible carbon sequester in biological form.


Assuntos
Florestas , Solo , Carbono/análise , Modelos Teóricos , Federação Russa , Termodinâmica
15.
Environ Res ; 198: 110484, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33212134

RESUMO

The performance of adsorbents prepared by alkali activation of high calcium fly ash was investigated for removing aqueous Zn. Two formulations involving the use of NaOH and Na2SiO3 activating solutions were used to prepare the adsorbents that feature different microstructural characteristics. The Zn sorption data indicates a sorption process that is controlled by both chemisorption and intra-particle diffusion. The Na2SiO3-activated material displayed higher sorption rates compared to the NaOH-activated material. The sorption kinetics show strong dependence on the microstructures of the adsorbents, wherein the Na2SiO3-activated material featuring higher contents of amorphous phases (96 %mass) in the hydrated phase assemblage, with attendant improved porosity and surface area, performed better than the NaOH-activated material (86 %mass amorphous phases) which showed higher degree of crystallinity and coarse morphology. The Na2SiO3-activated material exhibited 100% Zn removal efficiency within the first 5 min in all studied initial adsorbate concentrations(corresponding to sorption capacity of up to 200 mg/g), while the NaOH-activated analogue tends to lag, reaching 99.99% Zn removal efficiency after about 240 min in most cases. The two formulations were also examined with thermodynamic modeling and the results agree with experimental data in indicating that the use of alkali-silicate activating solution is most suitable for converting high calcium fly ash into efficient adsorbent for removing aqueous heavy metals.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Álcalis , Cálcio , Cinza de Carvão , Zinco
16.
J Biomech Eng ; 143(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076235

RESUMO

Pulmonary hypertension (PH) is one of the least understood and highly elusive cardiovascular conditions associated with elevated pulmonary arterial pressure. Although the disease mechanisms are not completely understood, evidence has accumulated from human and animal studies that irreversible processes of pulmonary arterial wall damage, compensated by stress-mediated growth, play critical roles in eliciting the mechanisms of disease progression. The aim of this study is to develop a thermodynamic modeling structure of the pulmonary artery to consider coupled plastic-degradation-growth irreversible processes to investigate the mechanical roles of the dissipative phenomena in the disease progression. The proposed model performs a model parameter study of plastic deformation and degradation processes coupled with dissipative growth subjected to elevated pulmonary arterial pressure and computationally generates in silico simulations of PH progression using the clinical features of PH, found in human morphological and mechanical data. The results show that considering plastic deformation can provide a much better fitting of the ex vivo inflation tests than a widely used pure hyperelastic model in higher pressure conditions. In addition, the parameter sensitivity study illustrates that arterial damage and growth cause the increased stiffness, and the full simulation (combining elastic-plastic-degradation-growth models) reveals a key postpathological recovery process of compensating vessel damage by vascular adaptation by reducing the rate of vessel dilation and mediating vascular wall stress. Finally, the simulation results of luminal enlargement, arterial thickening, and arterial stiffness for an anisotropic growth are found to be close to the values from the literature.


Assuntos
Hipertensão Pulmonar
17.
Molecules ; 26(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576980

RESUMO

In this study, the viscosity behavior of two mixtures of Ethaline (1 ChCl:2 ethylene glycol) with either methanol or ethanol were investigated over the temperature range of 283.15-333.15 K at atmospheric pressure. The measured viscosities of neat Ethaline, methanol, and ethanol showed reliable agreement with the corresponding reported literature values. The mixture viscosities were modeled by an Arrhenius-like model to determine the behavior of viscosity with respect to temperature. The data were also modeled by the four well-known mixture viscosity models of Grunberg-Nissan, Jouyban-Acree, McAllister, and Preferential Solvation. All of the model results were reliable, with the Jouyban-Acree and Preferential Solvation models showing the most accurate agreement with the experimental measurements. The Jones-Dole viscosity model was also investigated for the measured viscosities, and by analyzing the results of this model, strong interactions among Ethaline and the alcohol molecules were proposed for both systems. As a final analysis, viscosity deviations of the investigated systems were calculated to study the deviations of the viscosity behaviors with respect to ideal behavior. Both systems showed negative viscosity deviations at all of the investigated temperatures, with the negative values tending towards zero, and hence more ideal behavior, with increasing temperatures. Moreover, in order to correlate the calculated viscosity deviations, the Redlich-Kister model was successfully used for both systems and at each investigated temperature.

18.
Pharm Res ; 37(12): 249, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230602

RESUMO

PURPOSE: This work proposes an in-silico screening method for identifying promising formulation candidates in complex lipid-based drug delivery systems (LBDDS). METHOD: The approach is based on a minimum amount of experimental data for API solubilites in single excipients. Intermolecular interactions between APIs and excipients as well as between different excipients were accounted for by the Perturbed-Chain Statistical Associating Fluid Theory. The approach was applied to the in-silico screening of lipid-based formulations for ten model APIs (fenofibrate, ibuprofen, praziquantel, carbamazepine, cinnarizine, felodipine, naproxen, indomethacin, griseofulvin and glibenclamide) in mixtures of up to three out of nine excipients (tricaprylin, Capmul MCM, caprylic acid, Capryol™ 90, Lauroglycol™ FCC, Kolliphor TPGS, polyethylene glycol, carbitol and ethanol). RESULTS: For eight out of the ten investigated model APIs, the solubilities in the final formulations could be enhanced by up to 100 times compared to the solubility in pure tricaprylin. Fenofibrate, ibuprofen, praziquantel, carbamazepine are recommended as type I formulations, whereas cinnarizine and felodipine showed a distinctive solubility gain in type II formulations. Increased solubility was found for naproxen and indomethacin in type IIIb and type IV formulations. The solubility of griseofulvin and glibenclamide could be slightly enhanced in type IIIb formulations. The experimental validation agreed very well with the screening results. CONCLUSION: The API solubility individually depends on the choice of excipients. The proposed in-silico-screening approach allows formulators to quickly determine most-appropriate types of lipid-based formulations for a given API with low experimental effort. Graphical abstract.


Assuntos
Portadores de Fármacos , Excipientes/química , Lipídeos/química , Modelos Químicos , Preparações Farmacêuticas/química , Simulação por Computador , Composição de Medicamentos , Solubilidade , Temperatura
19.
J Sep Sci ; 42(11): 2013-2022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30964226

RESUMO

Thermodynamics-based models have been demonstrated to be useful for predicting retention time and peak widths in gas chromatography and two-dimensional gas chromatography separations. However, the collection of data to train the models can be time consuming, which lessens the practical utility of the method. In this contribution, a method for obtaining thermodynamic-based data to predict peak widths in temperature-programmed gas chromatography is presented. Experimental work to collect data for peak width prediction is identical to that required to collect data for retention time prediction using approaches that we have presented previously. Using this combined approach, chromatograms including retention times and peak widths are predicted with very high accuracy. Typical errors in retention time are < 0.5%, while errors in peak width are typically < 5% as demonstrated using polycycic aromatic hydrocarbons and a mixture containing compounds with aldehyde, ketone, alkene, alkane, alcohol, and ester functionalities.

20.
Ecotoxicol Environ Saf ; 173: 469-481, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30802736

RESUMO

Exposure to lanthanides (Ln) poses a serious health risk to animals and humans. Since Ln are mainly excreted with urine, we investigated the effect of La, Ce, Eu, and Yb exposure on renal rat NRK-52E and human HEK-293 cells for 8, 24, and 48 h in vitro. Cell viability studies using the XTT assay and microscopic investigations were combined with solubility and speciation studies using ICP-MS and TRLFS. Thermodynamic modeling was applied to predict the speciation of Ln in the cell culture medium. All Ln show a concentration- and time-dependent effect on both cell lines with Ce being the most potent element. In cell culture medium, the Ln are completely soluble and most probably complexed with proteins from fetal bovine serum. The results of this study underline the importance of combining biological, chemical, and spectroscopic methods in studying the effect of Ln on cells in vitro and may contribute to the improvement of the current risk assessment for Ln in the human body. Furthermore, they demonstrate that Ln seem to have no effect on renal cells in vitro at environmental trace concentrations. Nevertheless, especially Ce has the potential for harmful effects at elevated concentrations observed in mining and industrial areas.


Assuntos
Poluentes Ambientais/toxicidade , Rim/citologia , Elementos da Série dos Lantanídeos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/química , Humanos , Elementos da Série dos Lantanídeos/química , Ratos , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA